
INTRODUCTION TO TOPOLOGY OF REAL
ALGEBRAIC VARIETIES

OLEG VIRO

1. The Early Topological Study of Real Algebraic

Plane Curves

1.1. Basic Definitions and Problems. A curve (at least, an alge-
braic curve) is something more than just the set of points which belong
to it. There are many ways to introduce algebraic curves. In the ele-
mentary situation of real plane projective curves the simplest and most
convenient is the following definition, which at first glance seems to be
overly algebraic.

By a real projective algebraic plane curve1 of degree m we mean a
homogeneous real polynomial of degree m in three variables, considered
up to constant factors. If a is such a polynomial, then the equation
a(x0, x1, x2) = 0 defines the set of real points of the curve in the real
projective plane RP 2. We let RA denote the set of real points of the
curve A. Following tradition, we shall also call this set a curve, avoiding
this terminology only in cases where confusion could result.

A point (x0 : x1 : x2) ∈ RP 2 is called a (real) singular point of the
curve A if (x0, x1, x2) ∈ R3 is a critical point of the polynomial a which
defines the curve. The curve A is said to be (real) nonsingular if it
has no real singular points. The set of real points of a nonsingular real
projective plane curve is a smooth closed one-dimensional submanifold
of the projective plane.

In the topology of nonsingular real projective algebraic plane curves,
as in other similar areas, the first natural questions that arise are clas-
sification problems.

1.1.A (Topological Classification Problem). Up to homeomorphism,
what are the possible sets of real points of a nonsingular real projec-
tive algebraic plane curve of degree m?

1Of course, the full designation is used only in formal situations. One normally
adopts an abbreviated terminology. We shall say simply a curve in contexts where
this will not lead to confusion.
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1.1.B (Isotopy Classification Problem). Up to homeomorphism, what
are the possible pairs (RP 2,RA) where A is a nonsingular real projec-
tive algebraic plane curve of degree m?

It is well known that the components of a closed one-dimensional
manifold are homeomorphic to a circle, and the topological type of the
manifold is determined by the number of components; thus, the first
problem reduces to asking about the number of components of a curve
of degree m. The answer to this question, which was found by Harnack
[Har-76] in 1876, is described in Sections 1.6 and 1.8 below.

The second problem has a more naive formulation as the question
of how a nonsingular curve of degree m can be situated in RP 2. Here
we are really talking about the isotopy classification, since any home-
omorphism RP 2 → RP 2 is isotopic to the identity map. At present
the second problem has been solved only for m ≤ 7. The solution is
completely elementary when m ≤ 5: it was known in the last century,
and we shall give the result in this section. But before proceeding to an
exposition of these earliest achievements in the study of the topology of
real algebraic curves, we shall recall the isotopy classification of closed
one-dimensional submanifolds of the projective plane.

1.2. Digression: the Topology of Closed One-Dimensional Sub-
manifolds of the Projective Plane. For brevity, we shall refer to
closed one-dimensional submanifolds of the projective plane as topologi-
cal plane curves, or simply curves when there is no danger of confusion.

A connected curve can be situated in RP 2 in two topologically dis-
tinct ways: two-sidedly , i.e., as the boundary of a disc in RP 2, and
one-sidedly , i.e., as a projective line. A two-sided connected curve is
called an oval . The complement of an oval in RP 2 has two components,
one of which is homeomorphic to a disc and the other homeomorphic
to a Möbius strip. The first is called the inside and the second is
called the outside. The complement of a connected one-sided curve is
homeomorphic to a disc.

Any two one-sided connected curves intersect, since each of them re-
alizes the nonzero element of the groupH1(RP

2; Z2), which has nonzero
self-intersection. Hence, a topological plane curve has at most one one-
sided component. The existence of such a component can be expressed
in terms of homology: it exists if and only if the curve represents a
nonzero element of H1(RP

2; Z2). If it exists, then we say that the
whole curve is one-sided ; otherwise, we say that the curve is two-sided .

Two disjoint ovals can be situated in two topologically distinct ways:
each may lie outside the other one—i.e., each is in the outside compo-
nent of the complement of the other—or else they may form an injective
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Figure 1

pair , i.e., one of them is in the inside component of the complement of
the other—in that case, we say that the first is the inner oval of the
pair and the second is the outer oval. In the latter case we also say
that the outer oval of the pair envelopes the inner oval.

A set of h ovals of a curve any two of which form an injective pair is
called a nest of depth h.

The pair (RP 2, X), where X is a topological plane curve, is deter-
mined up to homeomorphism by whether or not X has a one-sided
component and by the relative location of each pair of ovals. We shall
adopt the following notation to describe this. A curve consisting of a
single oval will be denoted by the symbol 〈1〉. The empty curve will
be denoted by 〈0〉. A one-sided connected curve will be denoted by
〈J〉. If 〈A〉 is the symbol for a certain two-sided curve, then the curve
obtained by adding a new oval which envelopes all of the other ovals
will be denoted by 〈1〈A〉〉. A curve which is a union of two disjoint
curves 〈A〉 and 〈B〉 having the property that none of the ovals in one
curve is contained in an oval of the other is denoted by 〈A ∐ B〉. In
addition, we use the following abbreviations: if 〈A〉 denotes a certain
curve, and if a part of another curve has the form A ∐ A ∐ · · · ∐ A,
where A occurs n times, then we let n × A denote A ∐ · · · ∐ A. We
further write n× 1 simply as n.

When depicting a topological plane curve one usually represents the
projective plane either as a disc with opposite points of the boundary
identified, or else as the compactification of R2, i.e., one visualizes the
curve as its preimage under either the projection D2 → RP 2 or the
inclusion R2 → RP 2. In this book we shall use the second method.
For example, 1.2 shows a curve corresponding to the symbol 〈J ∐ 1 ∐
2〈1〉 ∐ 1〈2〉 ∐ 1〈3 ∐ 1〈2〉〉〉.
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1.3. Bézout’s Prohibitions and the Harnack Inequality. The
most elementary prohibitions, it seems, are the topological consequences
of Bézout’s theorem. In any case, these were the first prohibitions to
be discovered.

1.3.A (Bézout’s Theorem (see, for example, [Wal-50], [Sha-77])). Let
A1 and A2 be nonsingular curves of degree m1 and m2. If the set
RA1 ∩ RA2 is finite, then this set contains at most m1m2 points. If,
in addition, RA1 and RA2 are transversal to one another, then the
number of points in the intersection RA1 ∩ RA2 is congruent to m1m2

modulo 2.

1.3.B . Corollary (1). A nonsingular plane curve of degree m is one-
sided if and only if m is odd. In particular, a curve of odd degree is
nonempty.

In fact, in order for a nonsingular plane curve to be two-sided, i.e.,
to be homologous to zero mod 2, it is necessary and sufficient that
its intersection number with the projective line be zero mod 2. By
Bézout’s theorem, this is equivalent to the degree being even. �

1.3.C . Corollary (2). The number of ovals in the union of two nests
of a nonsingular plane curve of degree m does not exceed m/2. In
particular, a nest of a curve of degree m has depth at most m/2, and
if a curve of degree m has a nest of depth [m/2], then it does not have
any ovals not in the nest.

To prove Corollary 2 it suffices to apply Bézout’s theorem to the
curve and to a line which passes through the insides of the smallest
ovals in the nests. �

1.3.D . Corollary (3). There can be no more than m ovals in a set of
ovals which is contained in a union of ≤ 5 nests of a nonsingular plane
curve of degree m and which does not contain an oval enveloping all of
the other ovals of the set.

To prove Corollary 3 it suffices to apply Bézout’s theorem to the
curve and to a conic which passes through the insides of the smallest
ovals in the nests. �

One can give corollaries whose proofs use curves of higher degree
than lines and conics (see Section 3.8). The most important of such
results is Harnack’s inequality.

1.3.E . Corollary (4 (Harnack Inequality [Har-76])). The number of

components of a nonsingular plane curve of degreem is at most (m−1)(m−2)
2

+
1.
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The derivation of Harnack Inequality from Bézout’s theorem can be
found in [Har-76], and also [Gud-74]. However, it is possible to prove
Harnack Inequality without using Bézout’s theorem; see, for example,
[Gud-74], [Wil-78] and Section 3.2 below.

1.4. Curves of Degree ≤ 5. If m ≤ 5, then it is easy to see that
the prohibitions in the previous subsection are satisfied only by the
following isotopy types.

Table 1

m Isotopy types of nonsingular plane curves of degree m

1 〈J〉
2 〈0〉, 〈1〉
3 〈J〉, 〈J ∐ 1〉
4 〈0〉, 〈1〉, 〈2〉, 〈1〈1〉〉, 〈3〉, 〈4〉
5 〈J〉, 〈J ∐ 1〉, 〈J ∐ 2〉, 〈J ∐ 1〈1〉〉, 〈J ∐ 3〉, 〈J ∐ 4〉, 〈J ∐ 5〉, 〈J ∐ 6〉

For m ≤ 3 the absence of other types follows from 1.3.B and 1.3.C ;
for m = 4 it follows from 1.3.B , 1.3.C and 1.3.D , or else from 1.3.B ,
1.3.C and 1.3.E ; and for m = 5 it follows from 1.3.B , 1.3.C and
1.3.E . It turns out that it is possible to realize all of the types in Table
1; hence, we have the following theorem.

1.4.A. Isotopy Classification of Nonsingular Real Plane

Projective Curves of Degree ≤ 5. An isotopy class of topological
plane curves contains a nonsingular curve of degree m ≤ 5 if and only
if it occurs in the m-th row of Table 1.

The curves of degree ≤ 2 are known to everyone. Both of the isotopy
types of nonsingular curves of degree 3 can be realized by small per-
turbations of the union of a line and a conic which intersect in two real
points (Figure 2). One can construct these perturbations by replacing
the left side of the equation cl = 0 defining the union of the conic C and
the line L by the polynomial cl + εl1l2l3, where li = 0, i = 1, 2, 3, are
the equations of the lines shown in 2, and ε is a nonzero real number
which is sufficiently small in absolute value.

It will be left to the reader to prove that one in fact obtains the
curves in Figure 2 as a result; alternatively, the reader can deduce this
fact from the theorem in the next subsection.
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The isotopy types of nonempty nonsingular curves of degree 4 can
be realized in a similar way by small perturbations of a union of two
conics which intersect in four real points (Figure 3). An empty curve of
degree 4 can be defined, for example, by the equation x4

0 +x4
1 +x4

2 = 0.
All of the isotopy types of nonsingular curves of degree 5 can be

realized by small perturbations of the union of two conics and a line,
shown in Figure 4. �

For the isotopy classification of nonsingular curves of degree 6 it
is no longer sufficient to use this type of construction, or even the
prohibitions in the previous subsection. See Section 1.13 and ??.

1.5. The Classical Method of Constructing Nonsingular Plane
Curves. All of the classical constructions of the topology of nonsin-
gular plane curves are based on a single construction, which I will call
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Figure 4

classical small perturbation. Some special cases were given in the previ-
ous subsection. Here I will give a detailed description of the conditions
under which it can be applied and the results.

We say that a real singular point ξ = (ξ0 : ξ1 : ξ2) of the curve A is
an intersection point of two real transversal branches, or, more briefly,
a crossing ,2 if the polynomial a defining the curve has matrix of second
partial derivatives at the point (ξ0, ξ1, ξ2) with both a positive and a
negative eigenvalue, or, equivalently, if the point ξ is a nondegenerate
critical point of index 1 of the functions {x ∈ RP 2|xi 6= 0} → R x 7→
a(x)/xi deg a for i with ξi 6= 0. By Morse lemma (see, e.g. [Mil-69]) in
a neighborhood of such a point the curve looks like a union of two real
lines. Conversely, if RA1, . . . ,RAk are nonsingular mutually transverse
curves no three of which pass through the same point, then all of the
singular points of the union RA1 ∪ · · · ∪ RAk (this is precisely the
pairwise intersection points) are crossings.

1.5.A (Classical Small Perturbation Theorem (see Figure 5)). Let A be
a plane curve of degree m all of whose singular points are crossings,
and let B be a plane curve of degree m which does not pass through
the singular points of A. Let U be a regular neighborhood of the curve
RA in RP 2, represented as the union of a neighborhood U0 of the set of
singular points of A and a tubular neighborhood U1 of the submanifold
RAr U0 in RP 2 r U0.

Then there exists a nonsingular plane curve X of degree m such that :

2Sometimes other names are used. For example: a node, a point of type A1 with
two real branches, a nonisolated nondegenerate double point.
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(1) RX ⊂ U .
(2) For each component V of U0 there exists a homeomorphism hV →

D1 × D1 such that h(RA ∩ V ) = D1 × 0 ∪ 0 × D1 and h(RX ∩ V ) =
{(x, y) ∈ D1 ×D1|xy = 1/2}.

(3) RX r U0 is a section of the tubular fibration U1 → RAr U0.
(4) RX ⊂ {(x0 : x1 : x2) ∈ RP 2|a(x0, x1, x2)b(x0, x1, x2) ≤ 0}, where

a and b are polynomials defining the curves A and B.
(5) RX ∩ RA = RX ∩ RB = RA ∩ RB.
(6) If p ∈ RA∩RB is a nonsingular point of B and RB is transversal

to RA at this point, then RX is also transversal to RA at the point.
There exists ε > 0 such that for any t ∈ (0, ε] the curve given by the

polynomial a+ tb satisfies all of the above requirements imposed on X.

It follows from (1)–(3) that for fixed A the isotopy type of the curve
RX depends on which of two possible ways it behaves in a neighbor-
hood of each of the crossings of the curve A, and this is determined by
condition (4). Thus, conditions (1)–(4) characterize the isotopy type
of the curve RX. Conditions (4)–(6) characterize its position relative
to RA.

We say that the curves defined by the polynomials a + tb with t ∈
(0, ε] are obtained by small perturbations of A directed to the curve
B. It should be noted that the curves A and B do not determine the
isotopy type of the perturbed curves: since both of the polynomials b
and −b determine the curve B, it follows that the polynomials a − tb
with small t > 0 also give small perturbations of A directed to B. But
these curves are not isotopic to the curves given by a+ tb (at least not
in U), if the curve A actually has singularities.
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Proof. Proof of Theorem 1.5.A We set xt = a + tb. It is clear that for
any t 6= 0 the curve Xt given by the polynomial xt satisfies conditions
(5) and (6), and if t > 0 it satisfies (4). For small |t| we obviously have
RXt ⊂ U . Furthermore, if |t| is small, the curve RXt is nonsingular at
the points of intersection RXt ∩RB = RA∩RB, since the gradient of
xt differs very little from the gradient of a when |t| is small, and the
latter gradient is nonzero on RA ∩ RB (this is because, by assump-
tion, B does not pass through the singular points of A). Outside RB
the curve RXt is a level curve of the function a/b. On RA r RB this
level curve has critical points only at the singular points of RA, and
these critical points are nondegenerate. Hence, for small t the behavior
of RXt outside RB is described by the implicit function theorem and
Morse Lemma (see, for example, [Mil-69]); in particular, for small t 6= 0
this curve is nonsingular and satisfies conditions (2) and (3). Conse-
quently, there exists ε > 0 such that for any t ∈ (0, ε] the curve RXt is
nonsingular and satisfies (1)–(6). �

1.6. Harnack Curves. In 1876, Harnack [Har-76] not only proved
the inequality 1.3.E in Section 1.3, but also completed the topologi-
cal classification of nonsingular plane curves by proving the following
theorem.

1.6.A (Harnack Theorem). For any natural number m and any integer
c satisfying the inequalities

(1)
1 − (−1)m

2
≤ c ≤ m2 − 3m+ 4

2
,

there exists a nonsingular plane curve of degree m consisting of c com-
ponents.

The inequality on the right in 1 is Harnack Inequality. The inequality
on the left is part of Corollary 1 of Bézout’s theorem (see Section
1.3.B). Thus, Harnack Theorem together with theorems 1.3.B and
1.3.E actually give a complete characterization of the set of topological
types of nonsingular plane curves of degree m, i.e., they solve problem
1.1.A.

Curves with the maximum number of components (i.e., with (m2 −
3m + 4)/2 components, where m is the degree) are called M-curves.
Curves of degree m which have (m2 − 3m + 4)/2 − a components are
called (M − a)-curves. We begin the proof of Theorem 1.6.A by estab-
lishing that the Harnack Inequality 1.3.B is best possible.

1.6.B . For any natural number m there exists an M-curve of degree m.
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Proof. We shall actually construct a sequence of M-curves. At each
step of the construction we add a line to the M-curve just constructed,
and then give a slight perturbation to the union. We can begin the
construction with a line or, as in Harnack’s proof in [Har-76], with a
circle. However, since we have already treated curves of degree ≤ 5
and constructed M-curves for those degrees (see Section 1.4), we shall
begin by taking the M-curve of degree 5 that was constructed in Section
1.4, so that we can immediately proceed to curves that we have not
encountered before.

Recall that we obtained a degree 5 M-curve by perturbing the union
of two conics and a line L. This perturbation can be done using various
curves. For what follows it is essential that the auxiliary curve intersect
L in five points which are outside the two conics. For example, let the
auxiliary curve be a union of five lines which satisfies this condition
(Figure 6). We let B5 denote this union, and we let A5 denote the
M-curve of degree 5 that is obtained using B5.

We now construct a sequence of auxiliary curves Bm for m > 5. We
take Bm to be a union of m lines which intersect L in m distinct points
lying, for even m, in an arbitrary component of the set RLrRBm−1 and
for odd m in the component of RLr RBm−1 containing RL ∩ RBm−2.

We construct the M-curve Am of degree m using small perturbation
of the union Am−1∪L directed to Bm. Suppose that the M-curve Am−1

of degree m−1 has already been constructed, and suppose that RAm−1

intersects RL transversally in the m−1 points of the intersection RL∩
RBm−1 which lie in the same component of the curve RAm−1 and in
the same order as on RL. It is not hard to see that, for one of the
two possible directions of a small perturbation of Am−1 ∪L directed to
Bm, the line RL and the component of RAm−1 that it intersects give



INTRODUCTION TO TOPOLOGY OF REAL ALGEBRAIC VARIETIES 11

RB5

RB6

RB6
RB7

RB7

RA5

RA5

RA6

RA7

RA7

Figure 7

m − 1 components, while the other components of RAm−1, of which,
by assumption, there are

((m− 1)2 − 3(m− 1) + 4)/2 − 1 = (m2 − 5m+ 6)/2,

are only slightly deformed—so that the number of components of RAm

remains equal to (m2 − 5m + 6)/2 + m − 1 = (m2 − 3m + 4)/2. We
have thus obtained an M-curve of degree m. This curve is transversal
to RL, it intersects RL in RL∩RBm (see 1.5.A), and, since RL∩RBm

is contained in one of the components of the set RLrRBm−1, it follows
that the intersection points of our curve with RL are all in the same
component of the curve and are in the same order as on RL (Figure
7). �

The proof that the left inequality in 1 is best possible, i.e., that
there is a curve with the minimum number of components, is much
simpler. For example, we can take the curve given by the equation
xm

0 + xm
1 + xm

2 = 0. Its set of real points is obviously empty when m
is even, and when m is odd the set of real points is homeomorphic to
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RP 1 (we can get such a homeomorphism onto RP 1, for example, by
projection from the point (0 : 0 : 1)).

By choosing the auxiliary curves Bm in different ways in the construc-
tion of M-curves in the proof of Theorem 1.6.B , we can obtain curves
with any intermediate number of components. However, to complete
the proof of Theorem 1.6.A in this way would be rather tedious, even
though it would not require any new ideas. We shall instead turn to a
less explicit, but simpler and more conceptual method of proof, which
is based on objects and phenomena not encountered above.

1.7. Digression: the Space of Real Projective Plane Curves.
By the definition of real projective algebraic plane curves of degree
m, they form a real projective space of dimension m(m + 3)/2. The
homogeneous coordinates in this projective space are the coefficients of
the polynomials defining the curves. We shall denote this space by the
symbol RCm. Its only difference with the standard space RPm(m+3)/2

is the unusual numbering of the homogeneous coordinates. The point
is that the coefficients of a homogeneous polynomial in three variables
have a natural double indexing by the exponents of the monomials:

a(x0, x1, x2) =
∑

i,j≥0
i+j≤maijx

m−i−j
0 xi

1x
j
2.

We let RNCm denote the subset of RCm corresponding to the real
nonsingular curves. It is obviously open in RCm. Moreover, any non-
singular curve of degree m has a neighborhood in RNCm consisting of
isotopic nonsingular curves. Namely, small changes in the coefficients
of the polynomial defining the curve lead to polynomials which give
smooth sections of a tubular fibration of the original curve. This is
an easy consequence of the implicit function theorem; compare with
1.5.A, condition (3).

Curves which belong to the same component of the space RNCm of
nonsingular degree m curves are isotopic—this follows from the fact
that nonsingular curves which are close to one another are isotopic. A
path in RNCm defines an isotopy in RP 2 of the set of real points of
a curve. An isotopy obained in this way is made of sets of real points
of of real points of curves of degree m. Such an isotopy is said to be
rigid . This definition naturally gives rise to the following classification
problem, which is every bit as classical as problems 1.1.Aand 1.1.B .

1.7.A (Rigid Isotopy Classification Problem). Classify the nonsingular
curves of degree m up to rigid isotopy, i.e., study the partition of the
space RNCm of nonsingular degree m curves into its components.
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Figure 8

Ifm ≤ 2, it is well known that the solution of this problem is identical
to that of problem 1.1.B . Isotopy also implies rigid isotopy for curves
of degree 3 and 4. This was known in the last century; however, we
shall not discuss this further here, since it has little relevance to what
follows. At present problem 1.7.A has been solved for m ≤ 6.

Although this section is devoted to the early stages of the theory, I
cannot resist commenting in some detail about a more recent result.
In 1978, V. A. Rokhlin [Rok-78] discovered that for m ≥ 5 isotopy
of nonsingular curves of degree m no longer implies rigid isotopy. The
simplest example is given in Figure 8, which shows two curves of degree
5. They are obtained by slightly perturbing the very same curve in
Figure 4 which is made up of two conics and a line. Rokhlin’s original
proof uses argument on complexification, it will be presented below,
in Section ??? Here, to prove that these curves are not rigid isotopic,
we use more elementary arguements. Note that the first curve has
an oval lying inside a triangle which does not intersect the one-sided
component and which has its vertices inside the other three ovals, and
the second curve does not have such an oval—but under a rigid isotopy
the oval cannot leave the triangle, since that would entail a violation
of Bézout’s theorem.

We now examine the subset of RCm made up of real singular curves.
It is clear that a curve of degree m has a singularity at (1 : 0 : 0)

if and only if its polynomial has zero coefficients of the monomials
xm

0 , x
m−1
0 x1, x

m−1
0 x2. Thus, the set of real projective plane curves of

degree m having a singularity at a particular point forms a subspace
of codimension 3 in RCm.

We now consider the space S of pairs of the form (p, C), where
p ∈ RP 2, C ∈ RCm, and p is a singular point of the curve C. S
is clearly an algebraic subvariety of the product RP 2 × RCm. The
restriction to S of the projection RP 2 × RCm → RP 2 is a locally
trivial fibration whose fiber is the space of curves of degree m with
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a singularity at the corresponding point, i.e., the fiber is a projective
space of dimension m(m + 3)/2 − 3. Thus, S is a smooth manifold of
dimension m(m+3)/2−1. The restriction S → RCm of the projection
RP 2×RCm → RCm has as its image precisely the set of all real singular
curves of degreem, i.e., RCmrRNCm. We let RSCm denote this image.
Since it is the image of a (m(m+3)/2−1)-dimensional manifold under
smooth map, its dimension is at most m(m + 3)/2 − 1. On the other
hand, its dimension is at least equal m(m+3)/2−1, since otherwise, as
a subspace of codimension ≥ 2, it would not separate the space RCm,
and all nonsingular curves of degree m would be isotopic.

Using an argument similar to the proof that dim RSCm ≤ m(m +
3)/2−1, one can show that the set of curves having at least two singular
points and the set of curves having a singular point where the matrix
of second derivatives of the corresponding polynomial has rank ≤ 1,
each has dimension at most m(m+ 3)/2− 2. Thus, the set RSCm has
an open everywhere dense subset consisting of curves with only one
singular point, which is a nondegenerate double point (meaning that
at this point the matrix of second derivatives of the polynomial defining
the curve has rank 2). This subset is called the principal part of the set
RSCm. It is a smooth submanifold of codimension 1 in RCm. In fact,
its preimage under the natural map S → RCm is obviously an open
everywhere dense subset in the manifold S, and the restriction of this
map to the preimage is easily verified to be a one-to-one immersion,
and even a smooth imbedding.

There are two types of nondegenerate real points on a plane curve.
We say that a nondegenerate real double point (ξ0 : ξ1 : ξ2) on a curve A
is solitary if the matrix of second partial derivatives of the polynomial
defining A has either two nonnegative or two nonpositive eigenvalues
at the point (ξ0, ξ1, ξ2). A solitary nondegenerate double point of A
is an isolated point of the set RA. In general, a singular point of A
which is an isolated point of the set RA will be called a solitary real
singular point. The other type of nondegenerate real double point is a
crossing; crossings were discussed in Section 1.5 above. Corresponding
to this division of the nondegenerate real double points into solitary
points and crossings, we have a partition of the principal part of the
set of real singular curves of degree m into two open sets.

If a curve of degree m moves as a point of RCm along an arc which
has a transversal intersection with the half of the principal part of the
set of real singular curves consisting of curves with a solitary singular
point, then the set of real points on this curve undergoes a Morse mod-
ification of index 0 or 2 (i.e., either the curve acquires a solitary double
point, which then becomes a new oval, or else one of the ovals contracts
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to a point (a solitary nondegenerate double point) and disappears). In
the case of a transversal intersection with the other half of the principal
part of the set of real singular curves one has a Morse modification of
index 1 (i.e., two arcs of the curve approach one another and merge,
with a crossing at the point where they come together, and then imme-
diately diverge in their modified form, as happens, for example, with
the hyperbola in the family of affine curves of degree 2 given by the
equation xy = t at the moment when t = 0).

A line in RCm is called a (real) pencil of curves of degree m. If a
and b are polynomials defining two curves of the pencil, then the other
curves of the pencil are given by polynomials of the form λa+ µb with
λ, µ ∈ R r 0.

By the transversality theorem, the pencils which intersect the set
of real singular curves only at points of the principal part and only
transversally form an open everywhere dense subset of the set of all
real pencils of curves of degree m.

1.8. End of the Proof of Theorem 1.6.A. In Section 1.6 it was
shown that for any m there exist nonsingular curves of degree m with
the minimum number (1 − (−1)m)/2 or with the maximum number
(m2−3m+4)/2 of components. Nonsingular curves which are isotopic
to one another form an open set in the space RCm of real projective
plane curves of degree m (see Section 1.7). Hence, there exists a real
pencil of curves of degree m which connects a curve with minimum
number of components to a curve with maximum number of compo-
nents and which intersects the set of real singular curves only in its
principal part and only transversally. As we move along this pen-
cil from the curve with minimum number of components to the curve
with maximum number of components, the curve only undergoes Morse
modifications, each of which changes the number of components by at
most 1. Consequently, this pencil includes nonsingular curves with an
arbitrary intermediate number of components. �

1.9. Isotopy Types of Harnack M-Curves. Harnack’s construction
of M-curves in [Har-76] differs from the construction in the proof of
Theorem 1.6.B in that a conic, rather than a curve of degree 5, is
used as the original curve. Figure 9 shows that the M-curves of degree
≤ 5 which are used in Harnack’s construction [Har-76]. For m ≥ 6
Harnack’s construction gives M-curves with the same isotopy types as
in the construction in Section 1.6.

In these constructions one obtains different isotopy types of M-curves
depending on the choice of auxiliary curves (more precisely, depending
on the relative location of the intersections RBm ∩RL). Recall that in
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Figure 9

order to obtain M-curves it is necessary for the intersection RBm∩RL to
consist ofm points and lie in a single component of the set RLrRBm−1,
where for odd m this component must contain RBm−2 ∩ RL. It is
easy to see that the isotopy type of the resulting M-curve of degree
m depends only on the choice of the components of RL r RBr−1 for
even r < m where the intersections RL ∩ RBr are to be found. If we
take the components containing RL ∩ RBr−2 for even r as well, then
the degree m M-curve obtained from the construction has isotopy type
〈J∐(m2−3m+2)/2〉 for oddm and 〈(3m2−6m)/8∐1〈(m2−6m+8)/8〉〉
for even m. In Table 2 we have listed the isotopy types of M-curves of
degree ≤ 10 which one obtains from Harnack’s construction using all
possible Bm.

In conclusion, we mention two curious properties of Harnack M-
curves, for which the reader can easily furnish a proof.

1.9.A. The depth of a nest in a Harnack M-curve is at most 2.

1.9.B . Any Harnack M-curve of even degree m has (3m2 − 6m+ 8)/8
outer ovals and (m2 − 6m+ 8)/8 inner ovals.

1.10. Hilbert Curves. In 1891 Hilbert [Hil-91] seems to have been
the first to clearly state the isotopy classification problem for nonsin-
gular curves. As we saw, the isotopy types of Harnack M-curves are
very special. Hilbert suggested that from the topological viewpoints
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Table 2

m Isotopy types of the Harnack M-curves of degree m

2 〈1〉
3 〈J ∐ 1〉
4 〈4〉
5 〈J ∐ 6〉
6 〈9 ∐ 1〈1〉〉
7 〈J ∐ 15〉 〈J ∐ 13 ∐ 1〈1〉〉
8 〈18 ∐ 1〈3〉〉 〈17 ∐ 1〈1〉 ∐ 1〈2〉〉
9 〈J ∐ 28〉 〈J ∐ 24 ∐ 1〈3〉〉 〈J ∐ 26 ∐ 1〈1〉〉 〈J ∐ 23 ∐ 1〈1〉 ∐ 1〈2〉〉
10 〈30 ∐ 1〈6〉〉 〈29 ∐ 2〈3〉〉 〈29 ∐ 1〈1〉 ∐ 1〈5〉〉 〈28 ∐ 1〈1〉 ∐ 1〈2〉 ∐ 1〈3〉〉

Figure 10. Construction of even degree curves by
Hilbert’s method. Degrees 4 and 6.

M-curves are the most interesting. This Hilbert’s guess was strongly
confirmed by the whole subsequent development of the field.

There is a big gap between property 1.9.A of Harnack M-curves and
the corresponding prohibition in 1.3.C . Hilbert [Hil-91] showed that
this gap is explained by the peculiarities of the construction and not
by the intrinsic properties of M-curves. He proposed a new method of
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Figure 11. Construction of odd degree curves by
Hilbert’s method. Degrees 3 and 5.

Table 3

m Isotopy types of the Hilbert M-curves of degree m

4 〈1〉
6 〈9 ∐ 1〈1〉〉 〈1 ∐ 1〈9〉〉
8 〈5 ∐ 1〈14 ∐ 1〈1〉〉〉 〈17 ∐ 1〈2 ∐ 1〈1〉〉〉 〈18 ∐ 1〈3〉〉

〈1 ∐ 1〈2 ∐ 1〈17〉〉〉 〈1 ∐ 1〈14 ∐ 1〈5〉〉〉

5 〈J ∐ 6〉
7 〈J ∐ 15〉 〈J ∐ 12 ∐ 1〈2〉〉 〈J ∐ 13 ∐ 1〈3〉〉 〈J ∐ 2 ∐ 1〈12〉〉 〈J ∐ 1 ∐ 1〈13〉〉

constructing M-curves which was close to Harnack’s method, but which
gives M-curves with nests of any depth allowed by Theorem 1.3.C . In
his method the role a line plays in Harnack’s method is played instead
by a nonsingular conic, and a line or a conic is used for the starting
curve. Figures 10–11 show how to construct M-curves by Hilbert’s
method.

In Table 3 we list the isotopy types of M-curves of degree ≤ 8 which
are obtained by Hilbert’s construction.

The first difficult special problems that Hilbert met were related with
curves of degree 6. Hilbert succeeded to construct M-curves of degree
≥ 6 with mutual position of components different from the scheme
〈9∐ 1〈1〉〉 realized by Harnack. However he realized only one new real
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scheme of degree 6, namely 〈1 ∐ 1〈9〉〉. Hilbert conjectured that these
are the only real schemes realizable by M-curves of degree 6 and for a
long time affirmed that he had a (long) proof of this conjecture. Even
being false (it was disproved by D. A. Gudkov in 1969, who constructed
a curve with the scheme 〈5 ∐ 1〈5〉〉) this conjecture caught the things
that became in 30-th and 70-th the core of the theory.

In fact, Hilbert invented a method which allows to answer to all ques-
tions on topology of curves of degree 6. It involves a detailed analysis
of singular curves which could be obtained from a given nonsingular
one. The method required complicated fragments of singularity theory,
which had not been elaborated at the time of Hilbert. Completely this
project was realized only in the sixties by D. A. Gudkov. It was Gud-
kov who obtained a complete table of real schemes of curves of degree
6.

Coming back to Hilbert, we have to mention his famous problem list
[Hil-01]. He included into the list, as a part of the sixteenth problem, a
general question on topology of real algebraic varieties and more special
questions like the problem on mutual position of components of a plane
curve of degree 6.

The most mysterious in this problem seems to be its number. The
number sixteen plays a very special role in topology of real algebraic
varieties. It is difficult to believe that Hilbert was aware of that. It be-
came clear only in the beginning of seventies (see Rokhlin’s paper “Con-
gruences modulo sixteen in the sixteenth Hilbert’s problem” [Rok-72]).
Nonetheless, sixteen was the number assigned by Hilbert to the prob-
lem.

1.11. Analysis of the Results of the Constructions. Ragsdale.
In 1906, V. Ragsdale [Rag-06] made a remarkable attempt to guess new
prohibitions, based on the results of the constructions by Harnack’s
and Hilbert’s methods. She concentrated her attention on the case of
curves of even degree, motivated by the following special properties of
such curves. Since a curve of an even degree is two-sided, it divides
RP 2 into two parts, which have the curve as their common boundary.
One of the parts contains a nonorientable component; it is denoted by
RP 2

−. The other part, which is orientable, is denoted by RP 2
+. The

ovals of a curve of even degree are divided into inner and outer ovals
with respect to RP 2

+ (i.e., into ovals which bound a component of RP 2
+

from the inside and from the outside). Following Petrovsky [Pet-38],
one says that the outer ovals with respect to RP 2

+ are the even ovals
(since such an oval lies inside an even number of other ovals), and the
rest of the ovals are called odd ovals. The number of even ovals is
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denoted by p, and the number of odd ovals is denoted by n. These
numbers contain very important information about the topology of the
sets RP 2

+ and RP 2
−. Namely, the set RP 2

+ has p components, the set
RP 2

− has n+ 1 components, and the Euler characteristics are given by
χ(RP 2

+) = p−n and χ(RP 2
−) = n−p+1. Hence, one should pay special

attention to the numbers p and n. (It is amazing that essentially these
considerations were stated in a paper in 1906!)

By analyzing the constructions, Ragsdale [Rag-06] made the follow-
ing observations.

1.11.A ((compare with 1.9.A and 1.9.B)). For any Harnack M-curve
of even degree m,

p = (3m2 − 6m+ 8)/8, n = (m2 − 6m+ 8)/8.

1.11.B . For any Hilbert M-curve of even degree m,

(m2 − 6m+ 16)/8 ≤ p ≤ (3m2 − 6m+ 8)/8,

(m2 − 6m+ 8)/8 ≤ n ≤ (3m2 − 6m)/8.

This gave her evidence for the following conjecture.

1.11.C (Ragsdale Conjecture). For any curve of even degree m,

p ≤ (3m2 − 6m+ 8)/8, n ≤ (3m2 − 6m)/8.

The most mysterious in this problem seems to be its number. The
number sixteen plays a very special role in topology of real algebraic
varieties. It is difficult to believe that Hilbert was aware of that. It be-
came clear only in the beginning of seventies (see Rokhlin’s paper “Con-
gruences modulo sixteen in the sixteenth Hilbert’s problem” [Rok-72]).
Nonetheless, sixteen was the number assigned by Hilbert to the prob-
lem.

Writing cautiously, Ragsdale formulated also weaker conjectures.
About thirty years later I. G. Petrovsky [Pet-33], [Pet-38] proved one
of these weaker conjectures. See below Subsection 1.13.

Petrovsky also formulated conjectures about the upper bounds for p
and n. His conjecture about n was more cautious (by 1).

Both Ragsdale Conjecture formulated above and its version stated
by Petrovsky [Pet-38] are wrong. However they stayed for rather long
time: Ragsdale Conjecture on n was disproved by the author of this
book [Vir-80] in 1979. However the disproof looked rather like improve-

ment of the conjecture, since in the counterexamples n = 3k(k−1)
2

+ 1.
Drastically Ragsdale-Petrovsky bounds were disproved by I. V. Iten-
berg [Ite-93] in 1993: in Itenberg’s counterexamples the difference be-

tween p (or n) and 3k(k−1)
2

+ 1 is a quadratic function of k.
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In Section ?? we shall return to this very first conjecture of a general
nature on the topology of real algebraic curves. At this point we shall
only mention that several weaker assertions have been proved and ex-
amples have been constructed which made it necessary to weaken the
second inequality by 1. In the weaker form the Ragsdale conjecture
has not yet been either proved or disproved.

The numbers p and n introduced by Ragsdale occur in many of of the
prohibitions that were subsequently discovered. While giving full credit
to Ragsdale for her insight, we must also say that, if she had looked
more carefully at the experimental data available to her, she should
have been able to find some of these prohibitions. For example, it is
not clear what stopped her from making the conjecture which was made
by Gudkov [GU-69] in the late 1960’s. In particular, the experimental
data could suggest the formulation of the Gudkov-Rokhlin congruence
proved in [Rok-72]: for any M-curve of even degree m = 2k

p− n ≡ k2 mod 8

Maybe mathematicians trying to conjecture restrictions on some in-
teger should keep this case in mind as an evidence that restrictions can
have not only the shape of inequality, but congruence. Proof of these
Gudkov’s conjectures initiated by Arnold [Arn-71] and completed by
Rokhlin [Rok-72], Kharlamov [Kha-73], Gudkov and Krakhnov [GK-73]
had marked the beginning of the most recent stage in the development
of the topology of real algebraic curves. We shall come to this story at
the end of this Section.

1.12. Generalizations of Harnack’s and Hilbert’s Methods. Bru-
sotti. Wiman. Ragsdale’s work [Rag-06] was partly inspired by the
erroneous paper of Hulbrut, containing a proof of the false assertion
that an M-curve can be obtained by means of a classical small perturba-
tion (see Section 1.5) from only two M-curves, one of which must have
degree ≤ 2. If this had been true, it would have meant that an inductive
construction of M-curves by classical small perturbations starting with
curves of small degree must essentially be either Harnack’s method or
Hilbert’s method.

In 1910–1917, L. Brusotti showed that this is not the case. He found
inductive constructions of M-curves based on classical small perturba-
tion which were different from the methods of Harnack and Hilbert.

Before describing Brusotti’s constructions, we need some definitions.
A simple arc X in the set of real points of a curve A of degree m is
said to be a base of rank ρ if there exists a curve of degree ρ which
intersects the arc in ρm (distinct) points. A base of rank ρ is clearly
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also a base of rank any multiple of ρ (for example, one can obtain the
intersecting curve of the corresponding degree as the union of several
copies of the degree ρ curve, each copy shifted slightly).

An M-curve A is called a generating curve if it has disjoint bases X
and Y whose ranks divide twice the degree of the curve. An M-curve
A0 of degree m0 is called an auxiliary curve for the generating curve A
of degree m with bases X and Y if the following conditions hold:

a) The intersection RA∩RA0 consist of mm0 distinct points and lies
in a single component K of RA and in a single component K of RA0.

b) The cyclic orders determined on the intersection RA ∩ RA0 by
how it is situated in K and in K0 are the same.

c) X ⊂ RAr RA0.
d) If K is a one-sided curve and m0 ≡ mod 2, then the base X lies

outside the oval K0.
e) The rank of the base X is a divisor of the numbers m + m0 and

2m, and the rank of Y is a divisor of 2m+m0 and 2m.
An auxiliary curve can be the empty curve of degree 0. In this case

the rank of X must be a divisor of the degree of the generating curve.
Let A be a generating curve of degree m, and let A0 be a curve

of degree m0 which is an auxiliary curve with respect to A and the
bases X and Y . Since the rank of X divides m+m0, we may assume
that the rank is equal to m + m0. Let C be a real curve of degree
m + m0 which intersects X in m(m + m0) distinct points. It is not
hard to verify that a classical small perturbation of the curve A ∪ A0

directed to L will give an M-curve of degree m + m0, and that this
M-curve will be an auxiliary curve with respect to A and the bases
obtained from Y and X (the bases must change places). We can now
repeat this construction, with A0 replaced by the curve that has just
been constructed. Proceeding in this way, we obtain a sequence of M-
curves whose degree forms an arithmetic progression: km + m0 with
k = 1, 2, . . . . This is called the construction by Brusotti’s method, and
the sequence of M-curves is called a Brusotti series.

Any simple arc of a curve of degree ≤ 2 is a base of rank 1 (and
hence of any rank). This is no longer the case for curves of degree ≤ 3.
For example, an arc of a curve of degree 3 is a base of rank 1 if and
only if it contains a point of inflection. (We note that a base of rank 2
on a curve of degree 3 might not contain a point of inflection: it might
be on the oval rather than on the one-sided component where all of the
points of inflection obviously lie. A curve of degree 3 with this type of
base of rank 2 can be constructed by a classical small perturbation of
a union of three lines.)
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Figure 12

If the generating curve has degree 1 and the auxiliary curve has
degree 2, then the Brusotti construction turns out to be Harnack’s
construction. The same happens if we take an auxiliary curve of degree
1 or 0. If the generating curve has degree 2 and the auxiliary curve
has degree 1 or 2 (or 0), then the Brusotti construction is the same as
Hilbert’s construction.

In general, not all Harnack and Hilbert constructions are included
in Brusotti’s scheme; however, the Brusotti construction can easily be
extended in such a way as to be a true generalization of the Harnack and
Hilbert constructions. This extension involves allowing the use of an
arbitrary number of bases of the generating curve. Such an extension
is particularly worthwhile when the generating curve has degree ≤ 2,
in which case there are arbitrarily many bases.

It can be shown that Brusotti’s construction with generating curve
of degree 1 and auxiliary curve of degree ≤ 4 gives the same types of
M-curves as Harnack’s construction. But as soon as one uses auxiliary
curves of degree 5, one can obtain new isotopy types from Brusotti’s
construction. It was only in 1971 that Gudkov [Gud-71] found an aux-
iliary curve of degree 5 that did this. His construction was rather com-
plicated, and so I shall only give some references [Gud-71], [Gud-74],
[A’C-79] and present Figure 12, which illustrates the location of the
degree 5 curve relative to the generating line.

Even with the first stage of Brusotti’s construction, i.e., the classical
small perturbation of the union of the curve and the line, one obtains an
M-curve (of degree 6) which has isotopy type 〈5∐1〈5〉〉, an isotopy type
not obtained using the constructions of Harnack and Hilbert. Such an
M-curve of degree 6 was first constructed in a much more complicated
way by Gudkov [GU-69], [Gud-73] in the late 1960’s.

In Figures 13 and 14 we show the construction of two curves of degree
6 which are auxiliary curves with respect to a line. In this case the
Brusotti construction gives new isotopy types beginning with degree 8.

In the Hilbert construction we keep track of the location relative to
a fixed line A. The union of two conics is perturbed in direction to a
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Figure 13

quadruple of lines. One obtains a curve of degree 4. To this curve one
then adds one of the original conics, and the union is perturbed.

In numerous papers by Brusotti and his students, many series of
Brusotti M-curves were found. Generally, new isotopy types appear
in them beginning with degree 9 or 10. In these constructions they
paid much attention to combinations of nests of different depths—a
theme which no longer seems to be very interesting. An idea of the
nature of the results in these papers can be obtained from Gudkov’s
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RA RA

RA

Figure 14. In the construction by Hilbert’s method, we
keep track of the locations relative to a fixed line A. The
union of two conics is perturbed in direction to a 4-tuple
of lines. A curve of degree 4 is obtained. We add one of
the original conics to this curve, and then perturb the
union.

survey [Gud-74]; for more details, see Brusotti’s survey [Bru-56] and
the papers cited there.

An important variant of the classical constructions of M-curves, of
which we shall need to make use in the next section, is not subsumed
under Brusotti’s scheme even in its extended form. This variant, pro-
posed by Wiman [Wim-23], consists in the following. We take an M-
curve A of degree k having base X of rank dividing k; near this curve
we construct a curve A′ transversally intersecting A in k2 points of X,
after which we can subject the union A ∪ A′ to a classical small per-
turbation, giving an M-curve of degree 2k (for example, a perturbation
in direction to an empty curve of degree 2k). The resulting M-curve
has the following topological structure: each of the components of the
curve A except for one (i.e., except for the component containing X)
is doubled, i.e., is replaced by a pair of ovals which are each close to
an oval of the original curve, and the component containing X gives a
chain of k2 ovals. This new curve does not necessarily have a base, so
that in general one cannot construct a series of M-curves in this way.
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1.13. The First Prohibitions not Obtained from Bézout’s The-
orem. The techniques discussed above are, in essence, completely el-
ementary. As we saw (Section 1.4), they are sufficient to solve the iso-
topy classification problem for nonsingular projective curves of degree
≤ 5. However, even in the case of curves of degree 6 one needs subtler
considerations. Not all of the failed attempts to construct new isotopy
types of M-curves of degree 6 (after Hilbert’s 1891 paper [Hil-91], there
were two that had not been realized: 〈9 ∐ 1〈1〉〉 and 〈1 ∐ 1〈9〉〉) could
be explained on the basis of Bézout’s theorem. Hilbert undertook an
attack on M-curves of degree 6. He was able to grope his way toward a
proof that isotopy types cannot be realized by curves of degree 6, but
the proof required a very involved investigation of the natural stratifi-
cation of the space RC6 of real curves of degree 6. In [Roh-13], Rohn,
developing Hilbert’s approach, proved (while stating without proof sev-
eral valid technical claims which he needed) that the types 〈11〉 and
〈1〈10〉〉 cannot be realized by curves of degree 6. It was not until the
1960’s that the potential of this approach was fully developed by Gud-
kov. By going directly from Rohn’s 1913 paper [Roh-13] to the work
of Gudkov, I would violate the chronological order of my presentation
of the history of prohibitions. But in fact I would only be omitting
one important episode, to be sure a very remarkable one: the famous
work of I. G. Petrovsky [Pet-33], [Pet-38] in which he proved the first
prohibition relating to curves of arbitrary even degree and not a direct
consequence of Bézout’s theorem.

1.13.A (Petrovsky Theorem ([Pet-33], [Pet-38])). For any nonsingular
real projective algebraic plane curve of degree m = 2k

(2) −3

2
k(k − 1) ≤ p− n ≤ 3

2
k(k − 1) + 1.

(Recall that p denotes the number of even ovals on the curve (i.e.,
ovals each of which is enveloped by an even number of other ovals, see
Section 1.11), and n denotes the number of odd ovals.)

As it follows from [Pet-33] and [Pet-38], Petrovsky did not know
Ragsdale’s paper. But his proof runs along the lines indicated by Rags-
dale. He also reduced the problem to estimates of Euler characteristic
of the pencil curves, but he went further: he proved these estimates.
Petrovsky’s proof was based on a technique that was new in the study
of the topology of real curves: the Euler-Jacobi interpolation formula.
Petrovsky’s theorem was generalized by Petrovsky and Oleinik [PO-49]
to the case of varieties of arbitrary dimension, and by Olĕınik [Ole-51]
to the case of curves on a surface. More about the proof and the influ-
ence of Petrovsky’s work on the subsequent development of the subject
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can be found in Kharlamov’s survey [Kha-86] in Petrovsky’s collected
works. I will only comment that in application to nonsingular projec-
tive plane curves, the full potential of Petrovsky’s method, insofar as
we are able to judge, was immediately realized by Petrovsky himself.

We now turn to Gudkov’s work. In a series of papers in the 1950’s
and 1960’s, he completed the development of the techniques needed
to realize Hilbert’s approach to the problem of classifying curves of
degree 6 (these techniques were referred to as the Hilbert-Rohn method
by Gudkov), and he used the techniques to solve this problem (see
[GU-69]). The answer turned out to be elegant and stimulating.

1.13.B (Gudkov’s Theorem [GU-69]). The 56 isotopy types listed in
Table 4, and no others, can be realized by nonsingular real projective
algebraic plane curves of degree 6.

〈9 ∐ 1〈1〉〉 〈5 ∐ 1〈5〉〉 〈1 ∐ 1〈9〉〉

〈10〉 〈8 ∐ 1〈1〉〉 〈5 ∐ 1〈4〉〉 〈4 ∐ 1〈5〉〉 〈1 ∐ 1〈8〉〉 〈1〈9〉〉

〈9〉 〈7 ∐ 1〈1〉〉 〈6 ∐ 1〈2〉〉 〈5 ∐ 1〈3〉〉 〈4 ∐ 1〈4〉〉 〈3 ∐ 1〈5〉〉 〈2 ∐ 1〈6〉〉 〈1 ∐ 1〈7〉〉 〈1〈8〉〉

〈8〉 〈6 ∐ 1〈1〉〉 〈5 ∐ 1〈2〉〉 〈4 ∐ 1〈3〉〉 〈3 ∐ 1〈4〉〉 〈2 ∐ 1〈5〉〉 〈1 ∐ 1〈6〉〉 〈1〈7〉〉

〈7〉 〈5 ∐ 1〈1〉〉 〈4 ∐ 1〈2〉〉 〈3 ∐ 1〈3〉〉 〈2 ∐ 1〈4〉〉 〈1 ∐ 1〈5〉〉 〈1〈6〉〉

〈6〉 〈4 ∐ 1〈1〉〉 〈3 ∐ 1〈2〉〉 〈2 ∐ 1〈3〉〉 〈1 ∐ 1〈4〉〉 〈1〈5〉〉

〈5〉 〈3 ∐ 1〈1〉〉 〈2 ∐ 1〈2〉〉 〈1 ∐ 1〈3〉〉 〈1〈4〉〉

〈4〉 〈2 ∐ 1〈1〉〉 〈1 ∐ 1〈2〉〉 〈1〈3〉〉

〈3〉 〈1 ∐ 1〈1〉〉 〈1〈2〉〉 〈1〈1〈1〉〉〉

〈2〉 〈1〈1〉〉

〈1〉

〈0〉

Table 4. Isotopy types of nonsingular real projective
algebraic plane curves of degree 6.

This result, along with the available examples of curves of higher
degree, led Gudkov to the following conjectures.

1.13.C (Gudkov Conjectures [GU-69]). (i) For any M-curve of even
degree m = 2k

p− n ≡ k2 mod 8.

(ii) For any (M − 1)-curve of even degree m = 2k

p− n ≡ k2 ± 1 mod 8.
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While attempting to prove conjecture 1.13.C (i), V. I. Arnold [Arn-71]
discovered some striking connections between the topology of a real al-
gebraic plane curve and the topology of its complexification. Although
he was able to prove the conjecture itself only in a weaker form (modulo
4 rather than 8), the new point of view he introduced to the subject
opened up a remarkable perspective, and in fact immediately brought
fruit: in the same paper [Arn-71] Arnold proved several new prohibi-
tions (in particular, he strengthened Petrovsky’s inequalities 1.13.A).
The full conjecture 1.13.C (i) and its high-dimensional generalizations
were proved by Rokhlin [Rok-72], based on the connections discovered
by Arnold in [Arn-71].

I am recounting this story briefly here only to finish the preliminary
history exposition. At this point the technique aspects are getting too
complicated for a light exposition. After all, the prohibitions, which
were the main contents of the development at the time we come to, are
not the main subject of this book. Therefore I want to switch to more
selective exposition emphasizing the most profound ideas rather than
historical sequence of results.

A reader who prefare historic exposition can find it in Gudkov’s
survey article [Gud-74]. To learn about the many results obtained using
methods from the modern topology of manifolds and complex algebraic
geometry (the use of which was begun by Arnold in [Arn-71]), the
reader is referred to the surveys [Wil-78], [Rok-78], [Arn-79], [Kha-78],
[Kha-86], [Vir-86].

Exercises. 1.1 What is the maximal number p such that through any
p points of RP 2 one can trace a real algebraic curve of degree m?

1.2 Prove the Harnack inequality (the right hand side of (1)) de-
ducing it from the Bézout Theorem.
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2. A Real Algebraic Curve from the Complex Point of

View

2.1. Complex Topological Characteristics of a Real Curve. Ac-
cording to a tradition going back to Hilbert, for a long time the main
question concerning the topology of real algebraic curves was consid-
ered to be the determination of which isotopy types are realized by
nonsingular real projective algebraic plane curves of a given degree
(i.e., Problem 1.1.B above). However, as early as in 1876 F. Klein
[Kle-22] posed the question more broadly. He was also interested in
how the isotopy type of a curve is connected to the way the set RA of
its real points is positioned in the set CA of its complex points (i.e.,
the set of points of the complex projective plane whose homogeneous
coordinates satisfy the equation defining the curve).

The set CA is an oriented smooth two-dimensional submanifold of
the complex projective plane CP 2. Its topology depends only on the
degree of A (in the case of nonsingular A). If the degree is m, then CA
is a sphere with 1

2
(m− 1)(m− 2) handles. (It will be shown in Section

2.3.) Thus the literal complex analogue of Topological Classification
Problem 1.1.A is trivial.

The complex analogue of Isotopy Classification Problem 1.1.B leads
also to a trivial classification: the topology of the pair (CP 2,CA) de-
pends only on the degree of A, too. The reason for this is that the
complex analogue of a more refined Rigid Isotopy Classification prob-
lem 1.7.A has a trivial solution: nonsingular complex projective curves
of degree m form a space CNCm similar to RNCm (see Section 1.7)
and this space is connected, since it is the complement of the space
CSCm of singular curves in the space CCm(= CP

1

2
m(m+3)) of all curves

of degree m, and CSCm has real codimension 2 in CCm (its complex
codimension is 1).

The set CA of complex points of a real curve A is invariant under the
complex conjugation involution conj : CP 2 → CP 2 : (z0 : z1 : z2) 7→
(z0 : z1 : z2). The curve RA is the fixed point set of the restriction of
this involution to CA.

The real curve RA may divide or not divide CA. In the first case we
say that A is a dividing curve or a curve of type I, in the second case we
say that it is a nondividing curve or a curve of type II. In the first case
RA divides CA into two connected pieces.3 The natural orientations
of these two halves determine two opposite orientations on RA (which

3Proof: the closure of tne union of a connected component of CA r RA with its
image under conj is open and close in CA, but CA is connected.
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is their common boundary); these orientations of RA are called the
complex orientations of the curve.

A pair of orientations opposite to each other is called a semiorien-
tation. Thus the complex orientations of a curve of type I comprise a
semiorientation. Naturally, the latter is called a complex semiorienta-
tion.

The scheme of relative location of the ovals of a curve is called the
real scheme of the curve. The real scheme enhanced by the type of the
curve, and, in the case of type I, also by the complex orientations, is
called the complex scheme of the curve.

We say that the real scheme of a curve of degree m is of type I (type
II) if any curve of degree m having this real scheme is a curve of type
I (type II). Otherwise (i.e., if there exist curves of both types with the
given real scheme), we say that the real scheme is of indeterminate
type.

The division of curves into types is due to Klein [Kle-22]. It was
Rokhlin [Rok-74] who introduced the complex orientations. He intro-
duced also the notion of complex scheme and its type [Rok-78]. In
the eighties the point of view on the problems in the topology of real
algebraic varieties was broadened so that the role of the main object
passed from the set of real points, to this set together with its position
in the complexification. This viewpoint was also promoted by Rokhlin.

As we will see, the notion of complex scheme is useful even from the
point of view of purely real problems. In particular, the complex scheme
of a curve is preserved under a rigid isotopy. Therefore if two curves
have the same real scheme, but distinct complex schemes, the curves
are not rigidly isotopic. The simplest example of this sort is provided
by the curves of degree 5 shown in Figure 8, which are isotopic but not
rigidly isotopic.

2.2. The First Examples. A complex projective line is homeomor-
phic to the two-dimensional sphere.4 The set of real points of a real
projective line is homeomorphic to a circle; by the Jordan theorem it
divides the complexification. Therefore a real projective line is of type
I. It has a pair of complex orientations, but they do not add anything,
since the real line is connected and admits only one pair of orientations
opposite to each other.

4I believe that this may be assumed well-known. A short explanation is that a
projective line is a one-point compactification of an affine line, which, in the complex
case, is homeomorphic to R2. A one-point compactification of R2 is unique up to
homeomorphism and homeomorphic to S2.
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The action of conj on the set of complex points of a real projective
line is determined from this picture by rough topological arguments.
Indeed, it is not difficult to prove that any smooth involution of a two-
dimensional sphere with one-dimensional (and non-empty) fixed point
set is conjugate in the group of autohomeomorphisms of the sphere to
the symmetry in a plane. (1)

The set of complex points of a nonsingular plane projective conic is
homeomorphic to S2, because the stereographic projection from any
point of a conic to a projective line is a homeomorphism. Certainly, an
empty conic, as any real algebraic curve with empty set of real points, is
of type II. The empty set cannot divide the set of complex points. For
the same reasons as a line (i.e. by Jordan theorem), a real nonsingular
curve of degree 2 with non-empty set of real points is of type I. Thus
the real scheme 〈1〉 of degree 2 is of type I, while the scheme 〈0〉 is of
type II for any degree.

2.3. Classical Small Perturbations from the Complex Point of
View. To consider further examples, it would be useful to understand
what is going on in the complex domain, when one makes a classical
small perturbation (see Section 1.5).

First, consider the simplest special case: a small perturbation of the
union of two real lines. Denote the lines by L1 and L2 and the result
by C. As we saw above, CLi and CC are homeomorphic to S2. The
spheres CL1 and CL2 intersect each other at a single point. By the
complex version of the implicit function theorem, CC approximates
CL1 ∪ CL2 outside a neighborhood U0 of this point in the sense that
CCrU0 is a section of a tulubular neighborhood U1 of (CL1∪CL1)rU0,
cf. 1.5.A. Thus CC may be presented as the union of two discs and a
part contained in a small neighborhood of CL1 ∩CL2. Since the whole
CC is homeomorphic to S2 and the complement of two disjoint discs
embedded into S2 is homeomorphic to the annulus, the third part of
CC is an annulus. The discs are the complements of a neighborhood
of CL1 ∩CL2 in CL1 and CL2, respectively, slightly perturbed in CP 2,
and the annulus connects the discs through the neighborhood U0 of
CL1 ∩ CL2.

This is the complex view of the picture. Up to this point it does not
matter whether the curves are defined by real equations or not.

To relate this to the real view presented in Section 1.5, one needs
to describe the position of the real parts of the curves in their com-
plexifications and the action of conj. It can be recovered by rough
topological agruments. The whole complex picture above is invariant
under conj. This means that the intersection point of CL1 and CL2



32 OLEG VIRO

CL1

CL2

The common point

CC

of the lines

Figure 15

is real, its neighborhood U0 can be chosen to be invariant under conj.
Thus each half of CC is presented as the union of two half-discs and a
half of the annulus: the half-discs approximate the halves of CL1 and
CL2 and a half of annulus is contained in U0. See Figure 15.

This is almost complete description. It misses only one point: one
has to specify which half-discs are connected with each other by a half-
annulus.

First, observe, that the halves of the complex point set of any curve of
type I can be distinguished by the orientations of the real part. Each of
the halves has the canonical orientation defined by the complex struc-
ture, and this orientation induces an orientation on the boundary of
the half. This is one of the complex orientations. The other complex
orientation comes from the other half. Hence the halves of the complex-
ification are in one-to-one correspondence to the complex orientations.

Now we have an easy answer to the question above. The halves
of CLi which are connected with each other after the perturbation
correspond to the complex orientations of RLi which agree with some
orientation of RC. Indeed, the perturbed union C of the lines Li is a
curve of type I (since this is a nonempty conic, see Section 2.2). Each
orientation of its real part RC is a complex orientation. Choose one
of the orientations. It is induced by the canonical orientation of a half
of the complex point set CC. Its restriction to the part of the RC
obtained from RLi is induced by the orientation of the corresponding
part of this half.

The union of two lines can be perturbed in two different ways. On
the other hand, there are two ways to connect the halves of their com-
plexifications. It is easy to see that different connections correspond to
different perturbations. See Figure 16.
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Figure 16

The special classical small perturbation considered above is a key
for understanding what happens in the complex domain at an arbi-
trary classical small perturbation. First, look at the complex picture,
forgetting about the real part. Take a plane projective curve, which has
only nondegenerate double points. Near such a point it is organized as
a union of two lines intersecting at the point. This means that there
are a neighborhood U of the point in CP 2 and a diffeomorphism of
U onto C2 mapping the intersection of U and the curve onto a union
of two complex lines, which meet each other in 0. This follows from
the complex version of the Morse lemma. By the same Morse lemma,
near each double point the classical small perturbation is organized
as a small perturbation of the union of two lines: the union of two
transversal disks is replaced by an annulus.

For example, take the union of m projective lines, no three of which
have a common point. Its complex point set is the union of m copies
of S2 such that any two of them have exactly one common point. A
perturbation can be thought of as removal from each sphere m− 1 dis-

joint discs and insertion m(m−1)
2

tubes connecting the boundary circles
of the disks removed. The result is orientable (since it is a complex

manifold). It is easy to realize that this is a sphere with (m−1)(m−2)
2

handles. One may prove this counting the Euler characteristic, but it
may be seen directly: first, by inserting the tubes which join one of
the lines with all other lines we get a sphere, then each additional tube
gives rise to a handle. The number of these handles is

(

m− 1
2

)

=
(m− 1)(m− 2)

2
.
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By the way, this description shows that the complex point set of
a nonsingular plane projective curve of degree m realizes the same
homology class as the union of m complex projective lines: the m-fold
generator of H2(CP

2)(= Z).
Now let us try to figure out what happens with the complex schemes

in an arbitrary classical small perturbation of real algebraic curves. The
general case requirs some technique. Therefore we restrict ourselves to
the following intermediate assertion.

2.3.A. (Fiedler [Rok-78, Section 3.7] and Marin [Mar-80].) Let A1, . . . , As

be nonsingular curves of degrees m1, . . . , ms such that no three of them
pass through the same point and Ai intersects transversally Aj in mimj

real points for any i, j. Let A be a nonsingular curve obtained by a
classical small perturbation of the union A1 ∪ . . . As. Then A is of type
I if and only if all Ai are of type I and there exists an orientation of RA
which agrees with some complex orientations of A1, . . . , As (it means
that the deformation turning A1 ∪ . . . As into A brings the complex ori-
entations of Ai to the orientations of the corresponding pieces of RA
induced by a single orientation of the whole RA).

If it takes place, then the orientation of RA is one of the complex
orientations of A.

Proof. If some of Ai is of type II, then it has a pair of complex conjugate
imaginary points which can be connected by a path in CAi r RAi.
Under the perturbation this pair of points and the path survive (being
only slightly shifted), since they are far from the intersection where the
real changes happen. Therefore A in this case is also of type II.

Assume now that all Ai are of type I. If A is also of type I then a half
of CA is obtained from halves of CAi as in the case considered above.
The orientation induced on RA by the orientation of the half agrees
with orientations induced from the halves of the corresponding pieces.
Thus a complex orietation of A agrees with complex orientations of
Ai’s.

Again assume that all Ai are of type I. Let some complex orientations
of Ai agree with a single orientation of RA. As it follows from the
Morse Lemma, at each intersection point the perturbation is organized
as the model perturbation considered above. Thus the halves of CAi’s
defining the complex orientations are connected. It cannot happen that
some of the halves will be connected by a chain of halves to its image
under conj. But that would be the only chance to get a curve of type
II, since in a curve of type II each imaginary point can be connected
with its image under conj by a path disjoint from the real part. �
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R

Curve of type ICurve of type II

Figure 17. Construction of nonsingular cubic curves.
Cf. Figure 2.

Curves of type ICurves of type II

Figure 18. Construction of nonsingular quartic curves.
Cf. Figure 3.

2.4. Further Examples. Although Theorem 2.3.A describes only a
very special class of classical small perturbations (namely perturbations
of unions of nonsingular curves intersecting only in real points), it is
enough for all constructions considered in Section 1. In Figures 17, 18,
19, 20, 21, 22 and 23 I reproduce the constructions of Figures 2, 3, 4,
6, 7, 10 and 11, enhancing them with complex orientations if the curve
is of type I.

2.5. Digression: Oriented Topological Plane Curves. Consider
an oriented topological plane curve, i. e. an oriented closed one-dimensional
submanifold of the projective plane, cf. 1.2.

A pair of its ovals is said to be injective if one of the ovals is enveloped
by the other.
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Curves of type II Curves of type I

Figure 19. Construction of nonsingular quintic curves.
Cf. Figure 4.

RB5 RB5

RA5

RLL

Figure 20. Construction of a quintic M-curve with its
complex orientation. Cf. Figure 6.

An injective pair of ovals is said to be positive if the orientations of
the ovals determined by the orientation of the entire curve are induced
by an orientation of the annulus bounded by the ovals. Otherwise,
the injective pair of ovals is said to be negative. See Figure 24. It is
clear that the division of pairs of ovals into positive and negative pairs
does not change if the orientation of the entire curve is reversed; thus,
the injective pairs of ovals of a semioriented curve (and, in particular,
a curve of type I) are divided into positive and negative. We let Π+

denote the number of positive pairs, and Π− denote the number of
negative pairs.



INTRODUCTION TO TOPOLOGY OF REAL ALGEBRAIC VARIETIES 37

RB5

RB6

RB6
RB7

RB7

RA5

RA5

RA6

RA7

RA7

Figure 21. Harnack’s construction with complex orien-
tations. Cf. Figure 7.

The ovals of an oriented curve one-sidedly embedded into RP 2 can
be divided into positive and negative. Namely, consider the Möbius
strip which is obtained when the disk bounded by an oval is removed
from RP 2. If the integral homology classes which are realized in this
strip by the oval and by the doubled one-sided component with the
orientations determined by the orientation of the entire curve coincide,
we say that the oval is negative, otherwise we say that the oval is
positive. See Figure 25. In the case of a two-sided oriented curve, only
the non-outer ovals can be divided into positive and negative. Namely,
a non-outer oval is said to be positive if it forms a positive pair with
the outer oval which envelops it; otherwise, it is said to be negative.
As in the case of pairs, if the orientation of the curve is reversed, the
division of ovals into positive and negative ones does not change. Let
Λ+ denote the number of positive ovals on a curve, and let Λ− denote
the number of negative ones.
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Figure 22. Construction of even degree curves by
Hilbert’s method. Degrees 4 and 6. Cf. Figure 10.

Figure 23. Construction of odd degree curves by
Hilbert’s method. Degrees 3 and 5. Cf. Figure 11.

To describe a semioriented topological plane curve (up to homeo-
morphism of the projective plane) we need to enhance the coding sys-
tem introduced in 1.2. The symbols representing positive ovals will
be equipped with a superscript +, the symbols representing negative
ovals, with a superscript −. This kind of code of a semioriented curve
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positive injective pair negative injective pair

Figure 24

positive oval negative oval

one-sided component

Figure 25

is complete in the following sense: for any two semioriented curves with
the same code there exists a homeomorphism of RP 2, which maps one
of them to the other preserving semiorientations.

To describe the complex scheme of a curve of degree m we will use,
in the case of type I, the scheme of the kind described here, for its
complex semiorientation, equipped with subscript I and superscript m
and, in the case of type II, the notation used for the real scheme, but
equipped with subscript II and superscript m.

It is easy to check, that the coding of this kind of the complex scheme
of a plane projective real algebraic curve describes the union of RP 2 and
the complex point set of the curve up to a homeomorphism mapping
RP 2 to itself.

In these notations, the complex schemes of cubic curves shown in
Figure 17 are 〈J〉3II and 〈J ∐ 1−〉3I .

The complex schemes of quartic curves realized in Figure 18 are 〈0〉4II ,
〈1〉4II , 〈2〉4II , 〈1〈1−〉〉4I , 〈3〉4II , 〈4〉4I .

The complex schemes of quintic curves realized in Figure 19 are 〈J〉5II ,
〈J ∐ 1〉5II , 〈J ∐ 2〉5II , 〈J ∐ 1−〈1−〉〉5I , 〈J ∐ 3〉5II , 〈J ∐ 4〉5II , 〈J ∐ 1+ ∐ 3−〉5I
〈J ∐ 5〉5II , 〈J ∐ 3+∐−〉5I .

In fact, these lists of complex schemes contain all schemes of nonsin-
gular algebraic curves for degrees 3 and 5 and all nonempty schemes
for degree 4. To prove this, we need not only constructions, but also
restrictions on complex schemes. In the next two sections restrictions
sufficient for this will be provided.

2.6. The Simplest Restrictions on a Complex Scheme. To begin
with, recall the following obvious restriction, which was used in Section
2.2.
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2.6.A. A curve with empty real point set is of type II. �

The next theorem is in a sense dual to 2.6.A.

2.6.B . An M-curve is of type I.

Proof. Let A be an M-curve of degree m. Then RA is the union of

(m− 1)(m− 2)

2
+ 1

disjoint circles lying on CA, which is a sphere with (m−1)(m−2)
2

handles.

That many disjoint circles necessarily divide a sphere with (m−1)(m−2)
2

handles. Indeed, cut CA along RA. The Euler characteristic of a
surface has not changed. It equals

2 − 2

(

(m− 1)(m− 2)

2

)

= 2 − (m− 1)(m− 2).

Then cap each boundary circle with a disk. Each component of RA
gives rise to 2 boundary circles. Therefore the number of the boundary
circles is (m− 1)(m− 2) + 2. The surface which is obtained has Euler
characteristic 2− (m− 1)(m− 2) + (m− 1)(m− 2) + 2 = 4. However,
there is no connected closed surface with Euler characteristic 4. (A
connected closed oriented surface is a sphere with g handles for some
g ≥ 0; it has Euler characteristic 2 − 2g ≤ 2.) �

2.6.C (Klein’s Congruence (see [Kle-22, page 172])). If A is a curve of
type I of degree m with l ovals, then l ≡ [m

2
] mod 2.

Proof. Consider a half of CA bounded by RA. Its Euler characteristic

equals the half of the Euler characteristic of CA, i.e. 1 − (m−1)(m−2)
2

.
Cap the boundary components of the half with disjoint disks. This
increases the Euler characteristics by the number of components of
RA. In the case of even degree m = 2k, the Euler characteristic of
the result is 1 − (2k − 1)(k − 1) + l ≡ k + l mod 2. In the case of
odd degree m = 2k + 1, it is 1 − k(2k − 1) + l ≡ k + l mod 2. In
both cases the Euler characteristic should be even, since the surface
is closed orientable and connected (i.e. sphere with handles). Thus in
both cases k ≡ l mod 2, where k = [m/2]. �

2.6.D (A Nest of the Maximal Depth (see [Rok-78, 3.6])). A real scheme
of degree m containing a nest of depth k = [m/2] is of type I.

Such a scheme exists and is unique for any m (for even m it is just the
nest, for odd m it consists of the nest and the one-sided component).
To realize the scheme, perturb the union of k concentric circles and, in
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the case of odd m, a line disjoint from the circles. The uniqueness was
proved in 1.3, see 1.3.C .

I preface the proof of 2.6.D with a construction interesting for its
own. It provides a kind of window through which one can take a look
at the imaginary part of CP 2.

As we know (see Section 2.2), the complex point set of a real line is
divided by its real point set into two halves, which are in a natural one-
to-one correspondence with the orientations of the real line. The set
of all real lines on the projective plane is the real point set of the dual
projective plane. The halves of lines comprise a two-dimensional sphere
covering this projective plane. An especially clear picture of these
identifications appears, if one identifies real lines on the projective plane
with real planes in R3 containing 0. A half of a line is interpreted as the
corresponding plane with orientation. An oriented plane corresponds to
its positive unit normal vector, which is nothing but a point of S2. The
complex conjugation conj maps a half of a real line to the other half of
the same line. It corresponds to the reversing of the orientation, which,
in turn, corresponds to the antipodal involution S2 → S2 : x 7→ −x.

There is a unique real line passing through any imaginary point of
CP 2. To construct such a line, connect the point with the conjugate
one. The connecting line is unique since a pair of distinct points de-
termines a line, and this line is real, since it coincides with its image
under conj.

Consequently, there is a unique half of a real line containing an
imaginary point of CP 2. This construction determines a fibration
p : CP 2 r RP 2 → S2. The fibres of p are the halves of real lines.
Note that conjugate points of CP 2 r RP 2 are mapped to antipodal
points of S2.

Proof of 2.6.D. Let A be a real projective curve of degreem with a nest
of depth [m/2]. Choose a point P ∈ RP 2 from the domain encircled by
the interior oval of the nest. Consider the great circle of S2 consisting
of halves of real lines which pass through P . Since each line passing
through P intersects RA in m points, it cannot intersect CA r RA.
Therefore the great circle has no common point with the image of
CArRA under p : CP 2rRP 2 → S2. But the image contains, together
with any of its points, the antipodal point. Therefore it cannot be
connected, and CAr RA cannot be connected, too. �

2.7. Rokhlin’s Complex Orientation Formula. Now we shall con-
sider a powerful restriction on a complex orientation of a curve of type
I. It is powerful enough to imply restrictions even on real schemes of
type I. The first version of this restriction was published in 1974, see
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[Rok-74]. There Rokhlin considered only the case of an algebraic M-
curve of even degree. In [Mis-75] Mishachev considered the case of an
algebraic M-curve of odd degree. For an arbitrary nonsingular alge-
braic curve of type I, it was formulated by Rokhlin [Rok-78] in 1978.
The proofs from [Rok-74] and [Mis-75] work in this general case. The
only reason to restrict the main formulations in these early papers to
M-curves was the traditional viewpoint on the subject of the topology
of real plane algebraic curves.

Here are Rokhlin’s formulations from [Rok-78].

2.7.A (Rokhlin Formula). If the degree m is even and the curve is of
type I, then

2(Π+ − Π−) = l − m2

4
.

2.7.B (Rokhlin-Mishachev Formula). If m is odd and the curve is of
type I, then

Λ+ − Λ− + 2(Π+ − Π−) = l − m2 − 1

4
.

Theorems 2.7.A and 2.7.B can be united into a single formulation.
This requires, however, two preliminary definitions.

First, given an oriented topological curve C on RP 2, for any point
x of its complement, there is the index iC(x) of the point with respect
to the curve. It is a nonnegative integer defined as follows. Draw a
line L on RP 2 through x transversal to C. Equip it with a normal
vector field vanishing only at x. For such a vector field, one may
take the velocity field of a rotation of the line around x. At each
intersection point of L and C there are two directions transversal to
L: the direction of the vector belonging to the normal vector field and
the direction defined by the local orientation of C at the point. Denote
the number of intersection points where the directions are faced to
the same side of L by i+ and the number of intersection points where
the directions are faced to the opposite sides of L by i−. Then put
iC(x) = |i+ − i−|/2.5 It is easy to check that iC(x) is well defined: it
depends neither on the choice of L, nor on the choice of the normal
vector field. It does not change under reversing of the orientation of

5Division by 2 appears here to make this notion closer to the well-known notion
for an affine plane curve. In the definition for affine situation one uses a ray instead
of entire line. In the projective situation there is no natural way to divide a line
into two rays, but we still have an opportunity to divide the result by 2. Another
distinction from the affine situation is that there the index may be negative. It is
related to the fact that the affine plane is orientable, while the projective plane is
not.
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C. Thus for any nonsingular curve A of type I on the complement
RP 2 r RA, one has well defined function iRA.

The second prerequisite notion is a sort of unusual integration: an
integration with respect to the Euler characteristic, in which the Eu-
ler characteristic plays the role of a measure. It is well known that
the Euler characteristic shares an important property of measures: it
is additive in the sense that for any sets A, B such that the Euler
characteristics χA, χB, χ(A ∩B) and χ(A ∪B) are defined,

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B).

However, the Euler characteristic is neither σ-additive, nor positive.
Thus the usual theory of integral cannot be applied to it. This can be
done though if one restricts to a very narrow class of functions. Namely,
to functions which are finite linear combinations of characteristic func-
tions of sets belonging to some algebra of subsets of a topological space
such that each element of the algebra has a well defined Euler charac-
teristic. For a function f =

∑r
i=1 λi1ISi

set
∫

f(x) dχ(x) =
r

∑

i=1

λiχ(Si).

For details and applications of that notion, see [Vir-88].
Now we can unite 2.7.A and 2.7.B :

2.7.C (Rokhlin Complex Orientation Formula). If A is a nonsingular
real plane projective curve of type I and degree m then

∫

(iRA(x))2 dχ(x) =
m2

4
.

Here I give a proof of 2.7.C , skipping the most complicated details.
Take a curve A of degree m and type I. Let CA+ be its half bounded
by RA. It may be considered as a chain with integral coefficients.
The boundary of this chain (which is RA equipped with the complex
orientation) bounds in RP 2 a chain c with rational coefficients, since
H1(RP

2; Q) = 0. In fact, in the case of even degree the chain can
be taken with integral coefficients, but in the case of odd degree the
coefficients are necessarily half-integers. The explicit form of c may
be given in terms of function iRA: it is a linear combination of the
fundamental cycles of the components of RP 2 r RA with coefficients
equal to the values of iRA on the components (taken with appropriate
orientations).

Now take the cycle [CA+]−c and its image under conj, and calculate
their intersection number in two ways.
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First, it is easy to see that the homology class ξ of [CA+]−c is equal to
1
2
[CA] = m

2
[CP 1] ∈ H2(CP

2; Q). Indeed, [CA+]−c−conj([CA+]−c) =
[CA] + c − conj(c) = [CA], and therefore ξ − conj∗(ξ) = [CA] =
m[CP 1] ∈ H2(CP

2). On the other hand, conj acts in H2(CP
2) as mul-

tiplication by −1, and hence ξ − conj∗(ξ) = 2ξ = m[CP 1]. Therefore
ξ ◦ conj∗(ξ) = −(m

2
)2.

Second, one may calculate the same intersection number geometri-
cally: moving the cycles into a general position and counting the local
intersection numbers. I will perturb the cycle [CA+]− c. First, choose
a smooth tangent vector field V on RP 2 such that it has only nonde-
generate singular points, the singular points are outside RA, and on
RA the field is tangent to RA and directed according to the complex
orientation of A which comes from CA+. The latter means that at any
point x ∈ RA the vector

√
−1V (x) is directed inside CA+ (the mul-

tiplication by
√
−1 makes a real vector normal to the real plane and

lieves any vector tangent to RA tangent to CA). Now shift RA inside
CA+ along

√
−1V and extend this shift to a shift of the whole chain c

along
√
−1V . Let c′ denote the result of the shift of c and h denote the

part of CA+ which was not swept during the shift. The cycle [h] − c′

represents the same homology class ξ as [CA+] − c, and we can use it
to calculate the intersection number ξ ◦ conj∗(ξ). The cycles [h] − c′

and conj([CA+]− c) intersect only at singular points of V . At a singu-
lar point x they are smooth transversal two-dimensional submanifolds,
each taken with multiplicity −iRA(x). The local intersection number
at x is equal to (iRA(x))2 multiplied by the local intersection number
of the submanifolds supporting the cycles. The latter is equal to the
index of the vector field V at x multiplied by −1.

I omit the proof of the latter statement. It is nothing but a straight-
forward checking that multiplication by

√
−1 induces isomorphism be-

tween tangent and normal fibrations of RA in CA reversing orientation.
Now recall that the sum of indices of a vector field tangent to the

boundary of a compact manifold is equal to the Euler characteristic
of the manifold. Therefore the input of singular points lying in a con-
nected component of RP 2 r RA is equal to the Euler characteristic of
the component multiplied by −(iRA(x))2 for any point x of the com-
ponent. Summation over all connected components of RP 2 r RA gives
−

∫

(iRA(x))2 dχ(x). Its equality to the result of the first calculation is
the statement of 2.7.C . �

2.7.D (Corollary 1. Arnold Congruence). For a curve of an even degree
m = 2k and type I

p− n ≡ k2 mod 4.
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Proof. Observe that in the case of an even degree iRA(x) is even, iff
x ∈ RP 2

+. Therefore

(iRA(x))2 ≡
{

0 mod 4, if x ∈ RP 2
+

1 mod 4, if x ∈ RP 2
−.

Thus
∫

RP 2

(iRA(x))2 dχ(x) ≡ χ(RP 2
+) mod 4.

Recall that χ(RP 2
+) = p − n, see 1.11. Hence the left hand side of

Rokhlin’s formula is p− n modulo 4. The right hand side is k2. �

Denote the number of all injective pairs of ovals for a curve under
consideration by Π.

2.7.E (Corollary 2). For any curve of an even degree m = 2k and type
I with l ovals

Π ≥ 1

2
|l − k2|.

Proof. By 2.7.A Π+ − Π− = 1
2
(l − k2). On the other hand, Π =

Π+ + Π− ≥ |Π+ − Π−|. �

2.7.F (Corollary 3). For any curve of an odd degree m = 2k + 1 and
type I with l ovals

Π + l ≥ 1

2
k(k + 1).

Proof. Since l = Λ+ + Λ−, the Rokhlin - Mishachev formula 2.7.B can
be rewritten as follows:

Λ− + Π− − Π+ =
1

2
k(k + 1).

On the other hand, Π ≥ Π− − Π+ and l ≥ Λ−. �

2.8. Complex Schemes of Degree ≤ 5. As it was promised in Sec-
tion 2.5, we can prove now that only schemes realized in Figures 17, 18
and 19 are realizable by curves of degree 3, 4 and 5, respectively. For
reader’s convinience, I present here a list of all these complex schemes
in Table 5.

Degree 3. By Harnack’s inequality, the number of components is
at most 2. By 1.3.B a curve of degree 3 is one-sided, thereby the
number of components is at least 1. In the case of 1 component the
real scheme is 〈J〉, and the type is II by Klein’s congruence 2.6.C . In
the case of 2 components the type is I by 2.6.B . The real scheme is
〈J ∐ 1〉. Thus we have 2 possible complex schemes: 〈J ∐ 1−〉3I (realized
above) and 〈J ∐ 1+〉3I . For the first one

∫

(iRA(x))2 dχ(x) = 9/4 and
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Table 5

m Complex schemes of nonsingular plane curves of degree m
1 〈J〉1I
2

〈1〉2I
〈0〉2II

3
〈J ∐ 1−〉3I

〈J〉3II

4

〈4〉4I
〈3〉4II

〈1〈1−〉〉4I 〈2〉4II

〈1〉4II

〈0〉4II

5

J ∐ 3+ ∐ 3−〉5I
〈J ∐ 5〉5II

〈J ∐ 1+ ∐ 3−〉5I 〈J ∐ 4〉5II

〈J ∐ 3〉5II

〈J ∐ 1−〈1−〉〉5I 〈J ∐ 2〉5II

〈J ∐ 1〉5II

〈J〉5II

for the second
∫

(iRA(x))2 dχ(x) = 1/4. Since the right hand side of
the complex orientation formula is m2/4 and m = 3, only the first
possibility is realizable. �

Degree 4. By Harnack’s inequality the number of components is at
most 4. We know (see 1.4) that only real schemes 〈0〉, 〈1〉, 〈2〉, 〈1〈1〉〉,
〈3〉 and 〈4〉 are realized by nonsingular algebraic curves of degree 4.
From Klein’s congruence 2.6.C it follows that the schemes 〈1〉 and 〈3〉
are of type II. The scheme 〈0〉 is of type II by 2.6.A. By 2.6.B 〈4〉 is
of type I.

The scheme 〈2〉 is of type II, since it admits no orientation satis-
fying the complex orientation formula. In fact, for any orientation
∫

(iRA(x))2 dχ(x) = 2 while the right hand side is m2/4 = 4.
By 2.6.D the scheme 〈1〈1〉〉 is of type I. A calculation similar to the

calculation above on the scheme 〈2〉, shows that only one of the two
semiorientations of the scheme 〈1〈1〉〉 satisfies the complex orientation
formula. Namely, 〈1〈1−〉〉. It was realized in Figure 18.

Degree 5. By Harnack’s inequality the number of components is at
most 7. We know (see 1.4) that only real schemes 〈J〉, 〈J ∐1〉, 〈J ∐2〉,
〈J ∐ 1〈1〉〉, 〈J ∐ 3〉, 〈J ∐ 4〉, 〈J ∐ 5〉, 〈J ∐ 6〉 are realized by nonsingular
algebraic curves of degree 5. From Klein’s congruence 2.6.C it follows
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that the schemes 〈J ∐ 1〉, 〈J ∐ 3〉, 〈J ∐ 5〉 are of type II. By 2.7.F 〈J〉
and 〈J ∐ 2〉 are of type II.

By 2.6.B 〈J ∐ 6〉 is of type I. The complex orientation formula gives
the value of Λ− (cf. Proof of 2.7.F ): Λ− = 1

2
k(k + 1) = 3. This

determines the complex scheme. It is 〈J ∐ 3− ∐ 3+〉5I .
By 2.6.D 〈J ∐ 1〈1〉〉 is of type I. The complex orientation formula

allows only the semiorientation with Λ− = 2. Cf. Figure 19.
The real scheme 〈J ∐ 4〉 is of indefinite type, as follows from the

construction shown in Figure 19. In the case of type I only one semior-
ientation is allowed by the the complex orientation formula. It is
〈J ∐ 3− ∐ 1+〉5I .

Exercises. 2.1 Prove that for any two semioriented curves with the
same code (of the kind introduced in 3.7) there exists a homeomorphism
of RP 2 which maps one of them to another preserving semiorientations.

2.2 Prove that for any two curves A1, A2 with the same code of their
complex schemes (see Subsection 2.5) there exists a homeomorphism
CA1 ∪ RP 2 → CA2 ∪ RP 2 commuting with conj.

2.3 Deduce 2.7.A and 2.7.B from 2.7.C and, vise versa, 2.7.C from
2.7.A and 2.7.B .



48 OLEG VIRO

3. The Topological Point of View on Prohibitions

3.1. Flexible Curves. In Section 1 all prohibitions were deduced from
the Bézout Theorem. In Section 2 many proofs were purely topological.
A straightforward analysis shows that the proofs of all prohibitions are
based on a small number of basic properties of the complexification of
a nonsingular plane projective algebraic curve. It is not difficult to list
all these properties of such a curve A:

(1) Bézout’s theorem;
(2) CA realizes the class m[CP 1] ∈ H2(CP

2);
(3) CA is homeomorphic to a sphere with (m−1)(m−2)/2 handles;
(4) conj(CA) = conj;
(5) the tangent plane to CA at a point x ∈ RA is the complexifi-

cation of the tangent line of RA at x.

The last four are rough topological properties. Bézout’s theorem oc-
cupies a special position. If we assume that some surface smoothly
embedded into CP 2 intersects the complex point set of any algebraic
curve as, according to Bézout’s theorem, the complex point set of an
algebraic curve, then this surface is the complex point set of an alge-
braic curve. Thus the Bézout theorem is completely responsible for
the whole set of properties of algebraic curves. On the other hand,
its usage in obtaining prohibitions involves a construction of auxiliary
curves, which may be very subtle.

Therefore, along with algebraic curves, it is useful to consider objects
which imitate them topologically.

An oriented smooth closed connected two-dimensional submanifold
S of the complex projective plane CP 2 is called a flexible curve of degree
m if:

(i) S realizes m[CP 1] ∈ H2(CP
2);

(ii) the genus of S is equal to (m− 1)(m− 2)/2;
(iii) conj(S) = S;
(iv) the field of planes tangent to S on S ∩RP 2 can be deformed in

the class of planes invariant under conj into the field of (com-
plex) lines in CP 2 which are tangent to S ∩ RP 2.

A flexible curve S intersects RP 2 in a smooth one-dimensional sub-
manifold, which is called the real part of S and denoted by RS. Ob-
viously, the set of complex points of a nonsingular algebraic curve of
degree m is a flexible curve of degree m. Everything said in Section
2.1 about algebraic curves and their (real and complex) schemes car-
ries over without any changes to the case of flexible curves. We say
that a prohibition on the schemes of curves of degree m comes from
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topology if it can be proved for the schemes of flexible curves of degree
m. The known classification of schemes of degree ≤ 6 can be obtained
using only the prohibitions that come from topology. In other words,
for m ≤ 6 all prohibitions come from topology.

3.2. The Most Elementary Prohibitions on Real Topology of
a Flexible Curve. The simplest prohibitions are not related to the
position of RS in RP 2, but deal with the following purely topological
situation: a surface S, which is homeomorphic to a sphere with g
(= (m − 1)(m − 2)/2) handles, and an involution c (= conj) of S
reversing orientation with fixed point set F (= RS).

The most important of these prohibitions is Harnack’s inequality.
Recall that it is

L ≤ (m− 1)(m− 2)

2
+ 1,

where L is the number of connected components of the real part a curve
and m is its degree. Certainly, this formulation given in Section 1.3
can be better adapted to the context of flexible curves. The number
(m−1)(m−2)

2
is nothing but the genus. Therefore the Harnack inequality

follows from the following theorem.

3.2.A. For a reversing orientation involution c : S → S of a sphere
S with g handles, the number L of connected components of the fixed
point set F is at most g + 1.

In turn, 3.2.A can be deduced from the following purely topological
theorem on involutions:

3.2.B (Smith-Floyd Theorem). For any involution i of a topological
space X,

dimZ2
H∗(fix(i); Z2) ≤ dimZ2

H∗(X; Z2).

This theorem is one of the most famous results of the Smith theory. It
is deduced from the basic facts on equivariant homology of involution,
see, e. g., [Bre-72, Chapter 3].

Theorem 3.2.A follows from 3.2.B , since

dimZ2
H∗(S; Z2) = 2 + 2g,

and
dimZ2

H∗(F ; Z2) = 2L.

Smith - Floyd Theorem can be applied to high-dimensional situation,
too. See Sections 5.3 and ??. In the one-dimensional case, which we
deal with here, Theorem 3.2.B is easy to prove without any homology
tool, like the Smith theory. Namely, consider the orbit space S/c of the
involution. It is a connected surface with boundary. The boundary is
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the image of the fixed point set. The Euler characteristic of the orbit
space is equal to the half of the Euler characteristic of S, i.e. it is 2−2g

2
=

1 − g. Cap each boundary circle with a disk. The result is a closed
connected surface with Euler characteristic 1 − g + L. On the other
hand, as it is well known, the Euler characteristic of a connected closed
surface is at most 2. (Remind that such a surface is homeomorphic
either to the sphere, which has Euler characteristic 2, or the sphere
with h handles, whose Euler characteristic is 2 − 2h, or sphere with h
Möbius strips having Euler characteristic 2−h.) Therefore 1−g+L ≤ 2,
and L ≤ g + 1. �

These arguments contain more than just a proof of 2.3.A. In partic-
ular, they imply that

3.2.C . In the case of an M-curve (i.e., if L = g + 1) and only in this
case, the orbit space is a sphere with holes.

Similarly, in the case of an (M − 1)-curve, the orbit space is homeo-
morphic to the projective plane with holes.

If F separates S (i.e., S r F is not connected), the involution c is
said to be of type I, otherwise it is said to be of type II. The types
correspond to the types of real algebraic curves (see Section 2.1).

Note that F separates S at most into two pieces. To prove this, we
can use the same arguments as in a footnote in Section 2.1: the closure
of tne union of a connected component of S r F with its image under
c is open and close in S, but S is connected.

3.2.D . The orbit space S/c is orientable if and only if F separates S.

Proof. Assume that F separates S. Then the halves are homeomorphic,
since the involution maps each of them homeomorphically onto the
other one. Therefore, each of the halves is homeomorphic to the orbit
space. The halves are orientable since the whole surface is.

On the other hand, if F does not separate S, then one can connect
a point of S r F to its image under the involution by a path in the
complement SrF . Such a path covers a loop in the orbit space. This is
an orientation reversing loop, since the involution reverses orientation.

�

3.2.E ( (Cf. 2.6.C )). If the curve is of type I, then L ≡
[

m+1
2

]

mod 2.

Proof. This theorem follows from 3.2.C and the calculation of the Euler
characteristic of S/c made in the proof of the Harnack inequality above.
Namely, χ(S/c) = 1− g, but for any orientable connected surface with
Euler characteristic χ and L boundary components χ+L ≡ 0 mod 2.
Therefore 1− g+L ≡ 0 mod 2. Since g = (m− 1)(m− 2)/2 ≡

[

m−1
2

]
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mod 2, we obtain 1−
[

m−1
2

]

+L ≡ 0 mod 2 which is equivalent to the
desired congruence. �

3.2.F ( (Cf. 2.6.B)). Any M-curve is of type I.

Proof. By 3.2.C , in the case of M-curve the orbit space S/c is home-
omorphic to a sphere with holes. In particular, it is orientable. By
3.2.D , this implies that F separates S. �

Now consider the simplest prohibition involving the placement of the
real part of the flexible curve in the projective plane.

3.2.G. The real part of a flexible curve is one-sided if and only if the
degree is odd.

Proof. The proof of 3.2.G coincides basically with the proof of the same
statement for algebraic curves. One has to consider a real projective
line transversal to the flexible curve and calculate the intersection num-
ber of the complexification of this line and the lfexible curve. On one
hand, it is equal to the degree of the flexible curve. On the other hand,
the intersection points in CP 2 r RP 2 give rise to an even contribution
to the intersection number. �

Rokhlin’s complex orientation formula also comes from topology.
The proof presented in Section 2.7 works for a flexible curve.

At this point I want to break a textbook style exposition. Escaping
a detailed exposition of prohibitions, I switch to a survey.

In the next two sections, the current state of prohibitions on the
topology of a flexible curve of a given degree is outlined. (Recall that
all formulations of this sort are automatically valid for real projective
algebraic plane curves of the same degree.) After the survey a light
outline of some proofs is proposed. It is included just to convey a gen-
eral impression, rather than for more serious purposes. For complete
proofs, see the surveys [Wil-78], [Rok-78], [Arn-79], [Kha-78], [Kha-86],
[Vir-86] and the papers cited there.

3.3. A Survey of Prohibitions on the Real Schemes Which
Come from Topology. In this section I list all prohibitions on the
real scheme of a flexible curve of degree m that I am aware of, including
the ones already referred to above, but excluding prohibitions which
follow from the other prohibitions given here or from the prohibitions
on the complex schemes which are given in the next section.

3.3.A. A curve is one-sided if and only if it has odd degree.
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This fact was given before as a corollary of Bézout’s theorem (see
Section 1.3) and proved for flexible curves in Section 3.2 (Theorem
3.2.G).

3.3.B ( Harnack’s Inequality). The number of components of the set of

real points of a curve of degree m is at most (m−1)(m−2)
2

+ 1.

Harnack’s inequality is undoubtedly the best known and most im-
portant prohibition. It can also be deduced from Bézout’s theorem (cf.
Section 1.3) and was proved for flexible curves in Section 3.2 (Theorem
3.2.A).

In prohibitions 3.3.C –3.3.P the degree m of the curve is even: m =
2k.

Extremal Properties of Harnack’s Inequality

3.3.C (Gudkov-Rokhlin Congruence). In the case of an M-curve (i.e.,
if p+ n = (m− 1)(m− 2)/2 + 1),

p− n ≡ k2 mod 8.

3.3.D (Gudkov-Krakhnov-Kharlamov Congruence). In the case of an

(M − 1)-curve (i.e., if p+ n = (m−1)(m−2)
2

),

p− n ≡ k2 ± 1 mod 8.

The Euler characteristic of a component of the complement of a
curve in RP 2 is called the characteristic of the oval which bounds the
component from outside. An oval with a positive characteristic is said
to be elliptic, an oval with the zero characteristic is said to be parabolic
and an oval with a negative characteristic is said to be hyperbolic.

3.3.E (Fiedler’s Congruence). If the curve is an M-curve, m ≡ 4
mod 8, and every even oval has an even characteristic, then

p− n ≡ −4 mod 16.

3.3.F (Nikulin’s Congruence). If the curve is an M-curve, m ≡ 0
mod 8, and the characteristic of every even oval is divisible by 2r, then

either p− n ≡0 mod 2r+3,(3)

or else p− n =4qχ,(4)

where q ≥ 2 and χ ≡ 1 mod 2.

3.3.G (Nikulin’s Congruence). If the curve is an M-curve, m ≡ 2
mod 4 and the characteristic of every odd oval is divisible by 2r, then

p− n ≡ 1 mod 2r+3.
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Denote the number of even ovals with positive characteristic by p+,
the number of even ovals with zero characteristic by p0, and the number
of even ovals with negative characteristic by p−. Similarly define n+, n0

and n− for the odd ovals; and let l+, l0 and l− be the corresponding
numbers for both even and odd ovals together.

Refined Petrovsky Inequalities

3.3.H . p− n− ≤ 3k(k−1)
2

+ 1.

3.3.I . n− p− ≤ 3k(k−1)
2

.

Refined Arnold Inequalities

3.3.J . p− + p0 ≤ (k−1)(k−2)
2

+ 1+(−1)k

2
.

3.3.K . n− + n0 ≤ (k−1)(k−2)
2

.

Extremal Properties of the Refined Arnold Inequalities

3.3.L. If k is even and p− + p0 = (k−1)(k−2)
2

+ 1, then p− = p+ = 0.

3.3.M . If k is odd and n− + n0 = (k−1)(k−2)
2

, then n− = n+ = 0 and
there is only one outer oval at all.

Viro-Zvonilov Inequalities

Besides Harnack’s inequality, we know only one family of prohibition
coming from topology which extends to real schemes of both even and
odd degree. For proofs see [VZ-92].

3.3.N (Bound of the Number of Hyperbolic Ovals). The number of
components of the complement of a curve of odd degree m that have a

negative Euler characteristic does not exceed (m−3)2

4
. In particular, for

any odd m

l− ≤ (m− 3)2

4
.

The latter inequality also holds true for even m 6= 4, but it follows
from Arnold inequalities 3.3.J and 3.3.K .

3.3.O (Bound of the Number of Nonempty Ovals). If h is a divisor of
m and a power of an odd prime, and if m 6= 4, then

l− + l0 ≤ (m− 3)2

4
+
m2 − h2

4h2
.

If m is even, this inequality follows from 3.3.J–3.3.L.
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3.3.P (Extremal Property of the Viro-Zvonilov Inequality). If

l− + l0 =
(m− 3)2

4
+
m2 − h2

4h2
,

where h is a divisor of m and a power of an odd prime p, then there
exist α1, . . . , αr ∈ Zp and components B1, . . . , Br of the complement
RP 2 \ RA with χ(B1) = · · · = χ(Br) = 0, such that the boundary of
the chain

∑r
i=1 αi[Bi] ∈ C2(RP

2; Zp) is [RA] ∈ C1(RP
2; Zp).

3.4. Survey of Prohibitions on the Complex Schemes Which
Come From Topology. Recall that l denotes the total number of
ovals on the curve. The following theorem is a reformulation of 3.2.E .

3.4.A (See 2.6.A). A curve with empty real point set is of type II.

3.4.B ((See 2.6.C )). If the curve is of type I, then

l ≡
[m

2

]

mod 2.

3.4.C (Rokhlin Complex Orientation Formula (see 2.7.C )). Let A be
a nonsingular curve of type I and degree m. Then

∫

(iRA(x))2 dχ(x) =
m2

4

Extremal Properties of Harnack’s Inequality

3.4.D ((Cf. 2.6.B)). Any M-curve is of type I.

3.4.E (Kharlamov-Marin Congruence). Any (M−2)-curve of even de-
gree m = 2k with

p− n ≡ k2 + 4 mod 8

is of type I.

Extremal Properties of the Refined Arnold Inequalities

3.4.F . If m ≡ 0 mod 4 and p− + p0 = (m−2)(m−4)
8

+ 1, then the curve
is of type I.

3.4.G. If m ≡ 0 mod 4 and n− + n0 = (m−2)(m−4)
8

, then the curve is
of type I.

Extremal Properties of the Viro-Zvonilov Inequality

3.4.H . Under the hypothesis of 3.3.P, the curve is of type I.

Congruences
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3.4.I (Nikulin-Fiedler Congruence). If m ≡ 0 mod 4, the curve is of
type I, and every even oval has even characteristic, then p − n ≡ 0
mod 8.

The next two congruences are included violating a general promise
given at the beginning of the previous section. There I promised ex-
clude prohibitions which follow from other prohibitions given here. The
following two congruences are consequences of Rokhlin’s formula 3.4.C .
The first of them was discovered long before 3.4.C . The second was
overlooked by Rokhlin in [Rok-74], where he even mistakenly proved
that such a result cannot exist. Namely, Rokhlin proved that the com-
plex orientation formula does not imply any result which would not
follow from the prohibitions known by that time and could be formu-
lated solely in terms of the real scheme. Slepian congruence 3.4.K
for M-curves is the only counter-example to this Rokhlin’s statement.
Slepian was Rokhlin’s student, he discovered a gap in Rokhlin’s argu-
ments and deduced 3.4.K .

3.4.J (Arnold Congruence (see 2.7.D)). If m is even and the curve is
of type I, then

p− n ≡ m2

4
mod 4.

3.4.K (Slepian Congruence). If m is even, the curve is of type I, and
every odd oval has even characteristic, then

p− n ≡ m2

4
mod 8.

Rokhlin Inequalities

Denote by π and ν the number of even and odd nonempty ovals,
respectively, bounding from the outside those components of the com-
plement of the curve which have the property that each of the ovals
bounding them from the inside envelops an odd number of other ovals.

3.4.L. If the curve is of type I and m ≡ 0 mod 4, then

4ν + p− n ≤ (m− 2)(m− 4)

2
+ 4.

3.4.M . If the curve is of type I and m ≡ 2 mod 4, then

4π + n− p ≤ (m− 2)(m− 4)

2
+ 3.
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3.5. Ideas of Some Proofs. Theorems formulated in 3.3 and 3.4 are
very different in their profundity. The simplest of them were considered
in Subsection 3.2.

Congruences

There are two different approaches to proving congruences. The first
is due basically to Arnold [Arn-71] and Rokhlin [Rok-72]. It is based
on consideration of the intersection form of two-fold covering Y of CP 2

branched over the complex point set of the curve. The complex con-
jugation involution conj : CP 2 → CP 2 is lifted to Y in two different
ways, and the liftings induce involutions in H2(Y ), which are isometries
of the intersection form. One has to take an appropriate eigenspace of
one of the liftings and consider the restriction of the intersection form
to the eigenspace. The signature of this restriction can be calculated
in terms of p− n. On the other hand, it is involved into some congru-
ences of purely arithmetic nature relating it with the discriminant of
the form and the value of the form on some of characteristic vectors.
The latters can be calculated sometimes in terms of degree and the
difference between the number of ovals and the genus of curve. Re-
alizations of this scheme can be found in [Arn-71] for 3.4.J , [Rok-72]
for 3.3.C , [Kha-73] and [GK-73] for 3.3.D , [Nik-83] for 3.3.F , 3.3.G ,
3.4.I and a weakened form of 3.3.E . In survey [Wil-78] this method
was used for proving 3.3.C , 3.3.D and 3.4.J .

The second approach is due to Marin [Mar-80]. It is based on appli-
cation of the Rokhlin-Guillou-Marin congruence modulo 16 on charac-
teristic surface in a 4-manifold, see [GM-77]. It is applied either to the
surface in the quotient space CP 2/conj (diffeomorphic to S4) made of
the image of the flexible curve S and a half of RP 2 bounded by RS (as
it is the case for proofs of 3.3.C , 3.3.D and 3.4.E in [Mar-80]), or to
the surface in CP 2 made of a half of S and a half of RP 2 (as it is the
case for proofs of 3.3.E , 3.4.I and special cases of 3.3.F and 3.3.G in
[Fie-83]).

The first approach was applied also in high-dimensional situations.
The second approach worked better than the second one for curves on
surfaces distinct from projective plane, see [Mik-94]. Both were used
for singular curves [KV-88].

Inequalities

Inequalities 3.3.H , 3.3.I , 3.3.J , 3.3.K , 3.4.J and 3.4.K are proved
along the same scheme, originated by Arnold [Arn-71]. One constructs
an auxiliary manifold, which is the two-fold covering of CP 2 branched
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over S in the case of 3.3.H , 3.3.I , 3.3.J and 3.3.K and the two-fold
covering of CP 2/conj branched over the union of S/conj and a half of
RP 2 in the case of 3.4.J and 3.4.K . Then preimages of some of the
components of RP 2 r RS gives rise to cycles in this manifold. Those
cycles define homology classes with special properties formulated in
terms of their behavior with respect to the intersection form and the
complex conjugation involutions. On the other hand, the numbers of
homology classes with these properties are estimated. See [Arn-71],
[Gud-74], [Wil-78] and [Rok-80].

3.6. Flexible Curves of Degrees ≤ 5. In this subsection, I show
that for degrees ≤ 5 the prohibitions coming from topology allow the
same set of complex schemes as all prohibitions. The set of complex
schemes of algebraic curves of degrees ≤ 5 was described in 2.8. In fact
the same is true for degree 6 too. For degree greater than 6, it is not
known, but there is no reason to believe that it is the case.

Degrees ≤ 3. Theorems 3.3.A and the Harnack inequality 3.3.B
prohibit all non realizable real schemes for degree ≤ 3. To obtain the
complete set of prohibitions for complex schemes of degrees ≤ 3 one has
to add the Klein congruence 3.4.B , 3.4.D and the complex orientation
formula 3.4.C ; cf. Section 2.8.

Degree 4. By the Arnold inequlity 3.3.K , a flexible curve of degree
4 cannot have a nest of depth 3. By the Arnold inequality 3.3.J , it
has at most one nonempty positive oval, and if it has a nonempty oval
then, by the extremal property 3.3.L of this inequality, the real scheme
is 〈1〈1〉〉. Together with 3.3.A and the Harnack inequality 3.3.B , this
forms the complete set of prohibitions for real schemes of degree 4.

From the Klein congruence 3.4.B , it follows that the real schemes 〈1〉
and 〈3〉 are of type II. The empty real scheme 〈0〉 is of type II by 3.4.A.
By the extremal property 3.4.D of the Harnack inequality, 〈4〉 is of type
I. The real scheme 〈2〉 is of type II by the complex orientation formula
3.4.C , cf. Section 2.8. By 3.4.F , the scheme 〈1〈1〉〉 is of type I. By the
complex orientation formula, it admits only the complex orientation
〈1〈1−〉〉.

Degree 5. By the Viro-Zvonilov inequality 3.3.O , a flexible curve
of degree 5 can have at most one nonempty oval. By the extremal
property of this inequality 3.3.P , if a flexible curve of degree 5 has
a nonempty oval, then its real scheme is 〈J ∐ 1〈1〉〉. Together with
3.3.A and the Harnack inequality 3.3.B , this forms the complete set of
prohibitions for real schemes of degree 5.

From the Klein congruence 3.4.B , it follows that the real schemes
〈J∐1〉, 〈J∐3〉, and 〈J∐5〉 are of type II. From the complex orientation
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formula, one can deduce that the real schemes 〈J〉 and 〈J ∐ 2〉 are
of type II, cf. 2.8. By the extremal property 3.4.D of the Harnack
inequality, 〈J ∐ 6〉 is of type I. The complex orientation formula allows
only one complex semiorientation for this scheme, namely 〈J∐3−∐3+〉.
By the 3.4.H , the real scheme 〈J ∐ 1〈1〉〉 is of type I. The complex
orientation formula allows only one complex semiorientation for this
scheme, namely 〈J ∐ 1−〈1−〉〉, cf. 2.8. The real scheme 〈J ∐ 4〉 is of
indefinite type (even for algebraic curves, see 2.8). In the case of type
I, only one semiorientation is allowed by the the complex orientation
formula. It is 〈J ∐ 3− ∐ 1+〉.

3.7. Sharpness of the Inequalities. The arsenal of constructions in
Section 1 and the supply of curves constructed there, which are very
modest from the point of view of classification problems, turn out to
be quite rich if we are interested in the problem of sharpness of the
inequalities in Section 3.3.

The Harnack curves of even degree m with scheme

〈(3m2 − 6m)/8 ∐ 1〈m2 − 6m+ 8)/8〉〉

which were constructed in Section 1.6 (see also Section 1.9) not only
show that Harnack’s inequality 3.3.B is the best possible, but also show
the same for the refined Petrovsky inequality 3.3.H .

One of the simplest variants of Hilbert’s construction (see Section
1.10) leads to the construction of a series of M-curves of degree m ≡ 2

mod 4 with scheme
〈

(m−2)(m−4)
8

∐ 1
〈

3m(m−2)
8

〉〉

. This proves that the

refined Petrovsky inequality 3.3.I for m ≡ 2 mod 4 is sharp. If m ≡ 0
mod 4, the methods of Section 1 do not show that this inequality is
the best possible. This fact will be proved below in ??.

The refined Arnold inequality 3.3.J is best possible for any even m.
If m ≡ 2 mod 4, this can be proved using the Wiman M-curves (see
the end of Section 1.12). If m ≡ 0 mod 4, it follows using curves ob-
tained from a modification of Wiman’s construction: the construction
proceeds in exactly the same way, except that the opposite perturba-
tion is taken, as a result of which one obtains a curve that can serve as
the boundary of a tubular neighborhood of an M-curve of degree m/2.

The last construction (doubling), if applied to an M-curve of odd
degree, shows that the refined Arnold inequality 3.3.K is the best pos-
sible for m ≡ 2 mod 4. If m ≡ 0 mod 4, almost nothing is known
about sharpness of the inequality 3.3.K , except that for m = 8 the
right side can be lowered by 2.
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3.8. Prohibitions not Proven for Flexible Curves. In conclusion
of this section, let us come back to algebraic curves. We see that to a
great extent the topology of their real point sets is determined by the
properties which were included into the definition of flexible curves.
In fact, it has not been proved that it is not determined by these
properties completely. However some known prohibitions on topology
of real algebraic curves have not been deduced from them.

As a rule, these prohibitions are hard to summarize, in the sense
that it is difficult to state in full generality the results obtained by
some particular method. To one extent or another, all of them are
consequences of Bézout’s theorem.

Consider first the restrictions which follow directly from the Bézout
theorem. To state them, we introduce the following notations. De-
note by hr the maximum number of ovals occurring in a union of ≤ r
nestings. Denote by h′r the maximum number of ovals in a set of ovals
contained in a union of ≤ r nests but not containing an oval which en-
velops all of the other ovals in the set. Under this notations Theorems
1.3.C and 1.3.D can be stated as follows:

3.8.A. h2 ≤ m/2; in particular, if h1 = [m/2], then l = [m/2].

3.8.B . h′5 ≤ m; in particular, if h′4 = m, then l = m.

These statements suggest a whole series of similar assertions. Denote
by c(q) the greatest number c such that there is a connected curve of
degree q passing through any c points of RP 2 in general position. It is
known that c(1) = 2, c(2) = 5, c(3) = 8, c(4) = 13

3.8.C ((Generalization of Theorem 3.8.A)). If r ≤ c(q) with q odd,
then

hr +
[

c(q) − r

2

]

≤ qm

2
.

In particular, if hc(q)−1 =
[

qm
2

]

, then l =
[

qm
2

]

.

3.8.D ((Generalization of Theorem 3.8.B)). If r ≤ c(q) with q even,
then

h′r + [(c(q) − r)/2] ≤ qm/2.

In particular, if h′c(q)−1 = qm/2, then l = qm/2.

The following two restrictions on complex schemes are similar to
Theorems 3.8.A and 3.8.B . However, I do not know the corresponding
analogues of 3.8.C and 3.8.D .

3.8.E . If h1 =
[

m
2

]

, then the curve is of type I.

3.8.F . If h′4 = m, then the curve is of type I.
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Here I will not even try to discuss the most general prohibitions
which do not come from topology. I will only give some statements of
results which have been obtained for curves of small degree.

3.8.G. There is no curve of degree 7 with the real scheme 〈J ∐ 1〈14〉〉.
3.8.H . If an M-curve of degree 8 has real scheme 〈α∐1〈β〉∐1〈γ〉∐1〈δ〉〉
with nonzero β, γ and δ, then β, γ and δ are odd.

3.8.I . If an (M − 2)-curve of degree 8 with p− n ≡ 4 mod 8 has real
scheme 〈α ∐ 1〈β〉 ∐ 1〈γ〉 ∐ 1〈δ〉〉 with nonzero β, γ and δ, then two of
the numbers β, γ, δ are odd and one is even.

Proofs of 3.8.G and 3.8.H are based on technique initiated by Fiedler
[Fie-82]. It will be developed in the next Section.
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4. The Comlexification of a Curve from a Real Viewpoint

In the previous two sections we discovered that a knowledge on topol-
ogy of the complexification gives restriction on topology of real part of
the curve under consideration. More detailed topological information
on complexification can be obtained using geometric constructions in-
volving auxiliary curves. They use Bézout theorem. Therefore they
cannot be applied to flexible curves. Here we consider first the sim-
plest of arguments of that sort, and then obtain some special results
on curves of low degrees (up to 8) which, together with forthcoming
constructions will be useful in solution of some classification problems.

We will use the simplest auxiliary curves: lines. Consideration of
a pencil of lines (the set of all lines passing through a point) and in-
tersection of a curve with lines of this pencil can be thought of as a
study of the curve by looking at it from the common point of the lines.
However, since imaginary lines of the pencil can be included into this
study and even real lines may intersect the curve in imaginary points,
we have a chance to find out something on the complex part of the
curve.

4.1. Curves with Maximal Nest Revised. To begin with, I present
another proof of Theorem 2.6.D . It gives slightly more: not only that
a curve with maximal nest has type I, but that its complex orientation
is unique. This is not difficult to obtain from the complex orientation
formula. The real cause for including this proof is that it is the simplest
application of the technique, which will work in this section in more
complicated situations. Another reason: I like it.

4.1.A. If a nonsingular real plane projective curve A of degree m has
a nest of ovals of depth [m/2] then A is of type I and all ovals (except
for the exterior one, which is not provided with a sign in the case of
even m) are negative.

Recall that by Corollary 1.3.C of the Bézout theorem a nest of a
curve of degree m has depth at most m/2, and if a curve of degree m
has a nest of depth [m/2], then it does not have any ovals not in the
nest. Thus the real scheme of a curve of 4.1.A is 〈1〈1 . . . 〈1〉 . . . 〉〉, if m
is even, and 〈J〈1〈. . . 1〈1〉 . . . 〉〉 if m is odd. Theorem 4.1.A says that
the complex scheme in this case is defined by the real one and it is

〈1〈1− . . . 〈1−〉 . . . 〉〉mI
for even m and

〈J〈1−〈. . . 1−〈1−〉 . . . 〉〉mI
if m is odd.
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Proof of 4.1.A. Take a point P inside the smallest oval in the nest.
Project the complexification CA of the curve A from P to a real pro-
jective line CL not containing P . The preimage of RL under the projec-
tion is RA. Indeed, the preimage of a point x ∈ RL is the intersection
of CA with the line connecting P with x. But since P is inside all ovals
of the nest, any real line passing through it intersects CA only in real
points.

The real part RL of L divides CL into two halves. The preimage
of RL divides CA into the preimages of the halves of RL. Thus RA
divides CA.

The projection CA→ CL is a holomorphic map. In particular, it is
a branched covering of positive degree. Its restriction to a half of CA
is a branched covering of a half of CL. Therefore the restriction of the
projection to RA preserves local orientations defined by the complex
orientations which come from the halves of CA and CL. �

4.2. Fiedler’s Alternation of Orientations. Consider the pencil of
real lines passing through the intersection point of real lines L0, L1. It
is divided by L0 and L1 into two segments. Each of the segments can be
described as {Lt}t∈[0,1], where Lt is defined by equation (1− t)λ0(x) +
tλ1(x) = 0} under an appropriate choice of equations λ0(x) = 0 and
λ1(x) = 0 defining L0 and L1, respectively. Such a family {Lt}t∈[0,1] is
called a segment of the line pencil connecting L0 with L1.

A point of tangency of two oriented curves is said to be positive if the
orientations of the curves define the same orientation of the common
tangent line at the point, and negative otherwise.

The following theorem is a special case of the main theorem of
Fiedler’s paper [Fie-82].

4.2.A (Fiedler’s Theorem). Let A be a nonsingular curve of type I.
Let L0, L1 be real lines tangent to RA at real points x0, x1, which
are not points of inflection of A. Let {Lt}t∈I is a segment of the line
pencil, connecting L0 with L1. Orient the lines RL0, RL1 in such a
way that the orientations turn to one another under the isotopy RLt.
If there exists a path s : I → CA connecting the points x0, x1 such
that for t ∈ (0, 1) the point s(t) belongs to CA r RA and is a point
of transversal intersection of CA with CLt, then the points x0, x1 are
either both positive or both negative points of tangency of RA with RL0

and RL1 respectively.

I give here a proof, which is less general than Fiedler’s original one.
I hope though that it is more visualizable.
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Roughly speaking, the main idea of this proof is that, looking at a
curve, it is useful to move slightly the viewpoint. When one looks at the
intersection of the complexification of a real curve with complexification
of real lines of some pencil, besides the real part of the curve only some
arcs are observable. These arcs connect ovals of the curve, but they do
not allow to realize behavior of the complexification around. However,
when the veiwpoint (= the center of the pencil) is moving, the arcs
are moving too sweeping ribbons in the complexification. The ribbons
bear orientation inherited from the complexification and thereby they
allow to trace relation between the induced orientation of the ovals
connected by the arcs. See Figure 26

Proof of 4.2.A. The whole situation described in the 4.2.A is stable
under small moves of the point P = L0∩L1. It means that there exists
a neighbourhood U of P such that for each point P ′ ∈ U there are real
lines L′

0, L
′
1 passing through P ′ which are close to L0, L1, and tangent to

A at points x′0, x
′
1; the latter are close to x0, x1; there exists a segment

{L′
t}t∈I of the line pencil connecting L′

0 with L′
1 which consists of lines

close to Lt, and, finally, there exists a path s′ : I → CA connecting the
points x′0 and x′1, which is close to s, such that s′(t) ∈ CA ∩ CL′

t.
Choose a point P ′ ∈ U r

⋃

t∈I RLt. Since, obviously, RA is tangent
to the boundary of the angle

⋃

t∈I Lt from outside at x0, x1, the new
points x′0, x

′
1 of tangency are obtained from the old ones by moves, one

of which is in the direction of the orientation of RLt, the other – in the
opposite direction (see Figure 26). Since P ′ /∈

⋃

t∈I Lt, it follows that
no line of the family {Lt}t∈I belongs to the family {L′

t}t∈I and thus

s(Int I) ∩ s′(Int I) ⊂ (
⋃

t∈I

(CLt − RLt) ∩ (
⋃

t∈I

(CL′]t − RL′
t)) = ∅.
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Thus the arcs s(I) and s′(I) are disjoint, and bound in CA, together
with the arcs [x0, x

′
0] and [x′1, x1] of RA, a ribbon connecting arcs

[x0, x
′
0], [x1, , x

′
1]. This ribbon lies in one of the halves, into which RA

divides CA (see Figure 26). Orientation, induced on the arcs [x0, x
′
0],

[x1, x
′
1] by an orientation of this ribbon, coincides with a complex ori-

entation. It proves, obviously, 4.2.A �

The next thing to do is to obtain prohibitions on complex schemes
using Fiedler’s theorem. It takes some efforts because we want to de-
duce topological results from a geometric theorem. In the theorem it
is crucial how the curve is positioned with respect to lines, while in
any theorem on topology of a real algebraic curve, the hypothesis can
imply some particular position with respect to lines only implicitely.

Let A be a nonsingular curve of type I and P ∈ RP 2 rRA. Let Z =
{Lt}t∈I be a segment of the pencil of lines passing through P , which
contains neither a line tangent to RA at a point of inflection of RA
nor a line, whose complexifications is tangent to CA at an imaginary
point. Denote

⋃

t∈I RLt by C.
Fix a complex orientations of A and orientations of the lines RLt,

t ∈ I, which turn to one another under the natural isotopy. Orient
the part C of the projective plane in such a way that this orientation
induces on RL0, as on a part of its boundary, the orientation selected
above. An oval of A, lying in C is said to be positive with respect
to Z if its complex orientation and orientation of C induce the same
orientation of its interior; otherwise the oval is said to be negative with
respect to Z.

A point of tangency of A and a line from Z is a nondegenerate critical
point of the function A ∩ C → I which assigns to x the real number
t ∈ I such that x ∈ Lt. By index of the point of tangency we shall call
the Morse index of this function at that point (zero, if it is minimum,
one, if it is maximum). A pair of points of tangency of RA with lines
from Z is said to be switching , if the points of the pair has distinct
indices and one of the points is positive while the other one is negative;
otherwise the pair is said to be inessential . See Figure 27.

If A is a nonsingular conic with RA 6= ∅ and RA ⊂ C then the
tangency points make a switching pair. The same is true for any convex
oval. When an oval is deforming and loses its convexity, new points
of tangency may appear. If the deformation is generic, the points of
tangency appear and disappear pairwise. Each time appearing pair
is an inessential pair of points with distinct indices. Any oval can be
deformed (topologically) into a convex one. Tracing the births and
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deaths of points of tangency it is not difficult to prove the following
lemma.

4.2.B ([Fie-82, Lemma 2] ). Let Γ be a component of RA∩C and M be
the set of its points of tangency with lines from Z. If Γ∩∂C = ∅, then
M can be divided into pairs, one of which is switching, and all others
are inessential. If Γ∩ ∂C 6= ∅, and Γ connects distinct boundary lines
of C then M can be decomposed into inessential pairs. If the end points
of Γ are on the same boundary lines of C then M with one point deleted
can be decomposed into inessential pairs. �

Denote the closure of (CAr RA) ∩ (
⋃

t∈I CLt) by S. Fix one of the
decomposions into pairs of the set of points of tangency of lines from
Z with each component of RA ∩ C existing by 4.2.B . By a chain of
points of tangency call a sequence of points of tangency, in which any
two consecutive points either belong to one of selected pairs or lie in
the same component of S. A sequence consisting of ovals, on which
the selected switching pairs of points of tangency from the chain lie, is
called a chain of ovals . Thus the set of ovals of A lying in C appeared to
be decomposed to chains of ovals. The next theorem follows obviously
from 4.2.A.

4.2.C . The signs of ovals with respect to Z in a chain alternate (i.e. an
oval positive with respect to Z follows by an oval negative with respect
to Z, the latter oval follows by an oval positive with respect to Z). �

The next theorem follows in an obvious way from 4.2.C . Contrary
to the previous one, it deals with the signs of ovals with respect to the
one-sided component in the case of odd degree and outer ovals in the
case of even degree.
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4.2.D ([Fie-82, Theorem 3]). If the degree of a curve A is odd and ovals
of a chain are placed in the same component of the set

C r (one-sided component of RA)

then the signs of these ovals alternate. If degree of A is even and ovals
of a chain are placed in the same component of intersection of IntC
with the interior of the outer oval enveloping these ovals, then the signs
of ovals of this chain alternate. �

4.3. Complex Orientations and Pencils of Lines. Alternative
Approach. In proofs of 3.8.G , 3.8.H and 3.8.I , the theory devel-
oped in the previous section can be replaced by the following Theorem
4.3.A. Although this theorem can be obtained as a corollary of The-
orem 4.2.C , it is derived here from Theorem 2.3.A and the complex
orientation formula, and in the proof no chain of ovals is used. The
idea of this approach to Fiedler’s alternation of orientations is due to
V. A. Rokhlin.

4.3.A. Let A be a non-singular dividing curve of degree m. Let L0, L1

be real lines, C be one of two components of RP 2 r (RL0 ∪ RL1). Let
RL0 and RL1 be oriented so that the projection RL0 → RL1 from a
point lying in RP 2 r (C ∪ RL0 ∪ RL1) preserves the orientations. Let
ovals u0, u1 of A lie in RP 2 − C and ui is tangent to Li at one point
(i = 1, 2). If the intersection RA∩C consists of m−2 components, each
of which is an arc connecting RL0 with RL1, then points of tangency
of u0 with L0 and u1 with L1 are positive with respect to one of the
complex orientations of A.

Proof. Assume the contrary: suppose that with respect to a complex
orientation of A the tangency of u0 with L0 is positive and the tangency
of u1 with L1 is negative. Rotate L0 and L1 around the point L0 ∩ L1

in the directions out of C by small angles in such a way that each of
the lines L′

0 and L′
1 obtained intersects transversally RA in m points.

Perturb the union A∪L′
0 and A∪L′

1 obeying the orientations. By 2.3.A,
the nonsingular curves B0 and B1 obtained are of type I. It is easy to
see that their complex schemes can be obtained one from another by
relocating the oval, appeared from u1 (see Figure 28). This operation
changes one of the numbers Π+ − Π− and Λ+ − Λ− by 1. Therefore
the left hand side of the complex orientation formula is changed. It
means that the complex schemes both of B0 and B1 can not satisfy the
complex orientation formula. This proves that the assumption is not
true. �
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4.4. Curves of Degree 7. In this section Theorem 3.8.G is proved,
i.e. it is proved that there is no nonsingular curve of degree 7 with real
scheme 〈J ∐ 1〈14〉〉.

Assume the contrary: suppose that there exists a nonsingular curve
X of degree 7 with real scheme 〈J ∐ 1〈14〉〉.

Being an M-curve, X is of type I (see 2.6.B) and, hence, has a
complex orientation.

4.4.A. Lemma. X cannot have a complex scheme distinct from 〈J ∐
1+〈6+ ∐ 8−〉〉7I .
Proof. Let ε be the sign of the outer oval, i.e.

ε =

{

+1, if the outer oval is positive

−1, otherwise.

It is clear that

Λ+ =

{

Π− + 1, if ε = +1

Π+, if ε = −1
, Λ− =

{

Π+, if ε = +1

Π− + 1, if ε = −1.
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Therefore, Λ+ − Λ− = ε(Π− + 1 − Π+). On the other hand, by 2.7.B ,
Λ+ − Λ− = 2(Π− − Π+) + 3. From these two equalities we have

ε = 2 +
1

Π− + 1 − Π+

and, since |ε| = 1, it follows that ε = +1 and Π− + 1 − Π+ = −1, i.e.
Π+ −Π− = 2. Finally, since Π+ + Π− = 14, it follows that Π+ = 8 and
Π− = 6. This gives the desired result. �

The next ingredient in the proof of Theorem 3.8.G is a kind of con-
vexity in disposition of interior ovals. Although we study a projective
problem, it is possible to speak about convexity, if it is applied to inte-
rior ovals. The exact sense of this convexity is provided in the following
statement.

4.4.B . Lemma. Let A be any nonsingular curve of degree 7 with real
scheme 〈J ∐ α ∐ 1〈β〉〉 and the number of ovals ≥ 6. Then for each
of β interior ovals there exists a pair of real lines L1, L2 intersecting
inside this oval such that the rest β−1 interior ovals lie in one of three
domains into which RL1 ∪ RL2 cut the disk bounded by the exterior
oval.

Proof. A line intersecting two interior ovals cannot intersect any other
interior oval. Furthermore, it intersects each of these two interior ovals
in two points, meets the nonempty oval in two points and the one-sided
component in one point. (This follows from the following elementary
arguments: the line intersects the one-sided component with odd mul-
tiplicity, it has to intersect the nonempty oval, since it intersects ovals
inside of it, it can intersect any oval with even multiplicty and by
Bézout theorem the total number of ontersection points is at most 7.)
The real point set of the line is divided by the intersection points with
the nonempty oval into two segments. One of these segments contains
the intersection point with the one-sided component, the other one is
inside the nonempty oval and contains the intersections with the in-
terior ovals. A smaller segment connects the interior ovals inside the
nonempty ovals. Thus any points inside two interior ovals can be con-
nected by a segment of a line inside the exterior nonemty oval. See
Figure 29.

Choose a point inside each interior oval and connect these points
by segments inside the exterior oval. If the lines guaranteed by 4.4.B
exist, then the segments comprise a convex polygon. Otherwise, there
exist interior ovals u0, u1, u2 and u3 such that u0 is contained inside
the triangle made of the segments connecting inside the exterior oval
the points q1, q2, q3 chosen inside u1, u2 and u3. See Figure 30.
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To prove that this is impossible, assume that this is the case and
construct a conic K through q1, q2, q3, the point q0 chosen inside u0

and a point q4 chosen inside some empty oval u4 distinct from u0, u1,
u2 and u3 (recall that the total number of ovals is at least 6, thereby
u4 exists). Since the space of conics is a 5-dimensional real projective
space and the conics containing a real point form a real hyperplane,
there exists a real conic passing through any 5 real points. If the
conic happened to be singular, we could make it nonsingular moving
the points. However it cannot happen, since then the conic would be
decomposed into two lines and at least one of the lines would intersect
with 3 empty ovals and with the nonempty oval, which would contradict
the Bézout theorem.

Now let us estimate the number of intersection points of the conic
and the original curve A of degree 7. The conic RK passes through the
vertices of the triangle q1q2q3 and through the point q0 inside it. The
component of the intersection of RK with the interior of the triangle
has to be an arc connecting two points of q1, q2, q3. Let they be q1
and q2. Then the segment [q0, q3] lies outside the disk bounded by
RK. This segment together with an arc q0, q1, q3 of RK is a one-sided
circle in RP 2, which has to intersect the one-sided component of RA.
Since neither the segment nor the arc q0, q1 intersect RA, the arc q1, q3
does intersect. The intersection point is outside the nonempty oval,
while both q1 and q3 are inside. Therefore the same arc has at least
2 common points with the nonempty oval. Similar arguments show
that the arc q2, q3 intersects the one-sided component of RA and has
at least 2 common points with the nonempty oval. Thus RK intersects
the one-sided component of A at least in 2 points and the nonempty
oval at least in 4 points. See Figure 31. Together with 10 intersection
points with ovals ui, i = 0, 1, . . . , 4 (2 points with each) it gives 16
points, which contradicts the Bézout theorem. (2)

�
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End of Proof of Theorem 3.8.G. Assume that a curve X prohibited by
Theorem 3.8.G does exist. According to Lemma 4.4.A, its complex
scheme is 〈J ∐ 1+〈6+ ∐ 8−〉〉7I . Take a point inside a positive interior
oval. Consider the segment of the pencil of line passing through this
point. The other interior ovals compose a chain. By Lemma 4.4.B
they lie in one connected component of the intersection of the domain
swept by the lines of the segment of the pencil with the interior domain
of the nonempty oval. By Theorem 4.2.C signs of ovals in this chain
alternate. Therefore the difference between the numbers of positive
and negative ovals is 1, while it has to be 3 by Lemma 4.4.A. �
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5. Introduction to Topological Study of Real Algebraic

Spatial Surfaces

5.1. Basic Definitions and Problems. Our consideration of real
algebraic surfaces will be based on definitions similar to the definitions
that we used in the case of curves. In particular, by a real algebraic
surface of degree m in the 3-dimensional projective space we shall mean
a real homogeneous polynomial of degree m in four variables considered
up to a constant factor.

Obvious changes adapt definitions of sets of real and complex points,
singular points, singular and nonsingular curves and rigid isotopy to the
case of surfaces in RP 3. Exactly as in the case of curves one formulates
the topological classification problem (cf. 1.1.A above):

5.1.A (Topological Classification Problem). Up to homeomorphism,
what are the possible sets of real points of a nonsingular real projec-
tive algebraic surface of degree m in RP 3?

However, the isotopy classification problem 1.1.B splits into two
problems:

5.1.B (Ambient Topological Classification Problem). Classify up to
homeomorphism the pairs (RP 3,RA) where A is a nonsingular real
projective algebraic surface of degree m in RP 3?

5.1.C (Isotopy Classification Problem). Up to ambient isotopy, what
are the possible sets of real points of a nonsingular a nonsingular real
projective algebraic surface of degree m in RP 3?

The reason for this splitting is that, contrary to the case of projec-
tive plane, there exists a homeomorphism of RP 3 non-isotopic to the
identity. Indeed, 3-dimensional projective space is orientable, and the
mirror reflection of this space in a plane reverses orientation. Thus the
reflection is not isotopic to the identity. However, there are only two
isotopy classes of homeomorphisms of RP 3. It means that the differ-
ence between 5.1.B and 5.1.C is not really big. Although the isotopy
classification problem is finer, to resolve it, one should add to a solu-
tion of the ambient topological classification problem an answer to the
following question:

5.1.D (Amphichirality Problem). Which nonsingular real algebraic sur-
faces of degree m in RP 3 are isotopic to its own mirror image?

Each of these problems has been solved only for m ≤ 4. The differ-
ence between 5.1.B and 5.1.C does not appear: the solutions of 5.1.B
and 5.1.C coincide with each other for m ≤ 4. (Thus Problem 5.1.D
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has a simple answer for m ≤ 4: any nonsingular real algebraic surface
of degree ≤ 4 is isotopic to its mirror image.) For m ≤ 3 solutions of
5.1.A and 5.1.B also coincide, but for m = 4 they are different: there
exist nonsingular surfaces of degree 4 in RP 3 which are homeomorphic,
but embedded in RP 3 in a such a way that there is no homeomorphism
of RP 3 mapping one of them to another. The simplest example is pro-
vided by torus defined by equation

(x2
1 + x2

2 + x2
3 + 3x2

0)
2 − 16(x2

1 + x2
2)x

2
0 = 0

and the union of one-sheeted hyperboloid and an imaginary quadric
(perturbed, if you wish to have a surface without singular points even
in the complex domain)

Similar splitting happens with the rigid isotopy classification prob-
lem. Certainly, it may be transferred literally:

5.1.E (Rigid Isotopy Classification Problem). Classify up to rigid iso-
topy the nonsingular surfaces of degree m.

However, since there exists a projective transformation of RP 3, which
is not isotopic to the identity (e.g., the mirror reflection in a plane) and
a real algebraic surface can be nonisotopic rigidly to its mirror image,
one may consider the following rougher problem:

5.1.F (Rough Projective Classification Problem). Classify up to rigid
isotopy and projective transformation the nonsingular surfaces of degree
m.

Again, as in the case of topological isotopy and homeomorphism
problem, the difference between these two problems is an amphichiral-
ity problem:

5.1.G (Rigid Amphichirality Problem). Which nonsingular real alge-
braic
surfaces of degree m in RP 3 are rigidly isotopic to its mirror image?

Problems 5.1.E , 5.1.F and 5.1.G have been solved also for m ≤
4. For m ≤ 3 the solutions of 5.1.E and 5.1.F coincide with each
other and with the solutions of 5.1.A, 5.1.B and 5.1.C . For m ≤ 2
all these problems belong to the traditional analytic geometry. The
solutions are well-known and can be found in traditional textbooks on
analytic geometry. The case m = 3 is also elementary. It was studied
in the nineteenth century. The solution is associated with names of
Schläfli and Klein. The case m = 4 is really difficult. Although the
first attempts of a serious attack were undertaken in the nineteenth
century, too, and among the attackers we see D. Hilbert and K. Rohn,
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the complete solutions of all classification problems listed above were
obtained only in the seventies and eighties. Below, in Subsection ??, I
will discuss the results and methods. In higher degrees even the most
rough problems, like the Harnack problem on the maximal number of
components of a surface of degree m are still open.

5.2. Digression: Topology of Closed Two-Dimensional Sub-
manifolds of RP 3. For brevity, we shall refer to closed two-dimensional
submanifolds of RP 3 as topological spatial surfaces, or simply surfaces
when there is no danger of confusion.

Since the homology group H2(RP
3; Z2) is Z2, a connected surface

can be situated in RP 3 in two ways: zero-homologous, and realizing
the nontrivial homology class.

In the first case it divides the projective space into two domains
being the boundary for both domains. Hence, the surface divides its
tubular neighborhood, i. e. it is two-sided.

In the second case the complement of the surface in the projective
space is connected. (If it was not connected, the surface would bound
and thereby realize the zero homology class.) Moreover, it is one-sided.

The latter can be proved in many ways. For example, if the surface
was two-sided and its complement was connected, there would exist a
nontrivial infinite cyclic covering of RP 3, which would contradict the
fact that π1(RP

3) = Z2. The infinite cyclic covering could be con-
structed by gluing an infinite sequence of copies of RP 3 cut along the
surface: each copy has to be glued along one of the sides of the cut to
the other side of the cut in the next copy.

Another proof: take a projective plane, make it transversal to the
surface, and consider the curve which is their intersection. Its homology
class in RP 2 is the image of the nontrivial element of H2(RP

3; Z2) un-
der the inverse Hopf homomorphism in! : H2(RP

3; Z2) → H1(RP
2; Z2).

This is an isomorphism, as one can see taking the same construction
in the case when the surface is another projective plane. Thus the in-
tersection is a one-sided curve in RP 2. Hence the normal fibration of
the original surface in RP 3 is not trivial. This means that the surface
is one-sided.

A connected surface two-sidedly embedded in RP 3 is orientable, since
it bounds a part of the ambient space which is orientable. Therefore,
such a surface is homeomorphic to sphere or to sphere with handles.
There is no restriction to the number of handles: one can take an
embedded sphere bounding a small ball, and adjoin to it any number
of handles.
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A one-sidedly embedded surface is nonorientable. Indeed, its normal
bundle is nonorientable, while the restriction of the tangent bundle of
RP 3 to the surface is orientable (since RP 3 is). The restriction of the
tangent bundle of RP 3 to the surface is the Whitney sum of the normal
and tangent bundles of the surface. Therefore it cannot happen that
only one of these three bundles is not orientable.

Contrary to the case of two-sided surfaces, in the case of one-sided
surfaces there is an additional restriction on their topological types.

5.2.A. The Euler characteristic of a connected surface one-sidedly em-
bedded to RP 3 is odd.

In particular, it is impossible to embed a Klein bottle to RP 3. (The
Euler characteristic of a connected surface two-sidedly embedded into
RP 3 is even, but it follows from orientability: the Euler characteristic
of any closed oriented surface is even.) By topological classification
of closed surfaces, a nonorientable connected surface with odd Euler
characteristic is homeomorphic to the projective plane or to the pro-
jective plane with handles. Any surface of this sort can be embedded
into RP 3: for the projective plane RP 3 is the native ambient space,
and one can adjoin to it in RP 3 any number of handles. We denote a
sphere with g handles by Sg and a projective plane with g handles by
Pg.

Proof of 5.2.A. Let S be a connected surface one-sidedly embedded
into RP 3. By a small shift it can be made transversal to the projective
plane RP 2 standardly embedded into RP 3. Since both surfaces are
embedded one-sidedly, they realize the same homology class in RP 3.
Therefore their union bounds in RP 3: one can color the complement
RP 3 r (S ∪ RP 2) into two colors in such a way that the components
adjacent from the different sides to the same (two-dimensional) piece
of S ∪ RP 2 would be of different colors. It is a kind of checkerboard
coloring.

Consider the disjoint sum Q of the closures of those components
of RP 3 r (S ∪ RP 2) which are colored with the same color. It is a
compact 3-manifold. It is oriented since each of the components inherits
orientation from RP 3. The boundary of this 3-manifold is composed of
pieces of S and RP 2. It can be thought of as the result of cutting both
surfaces along their intersection curve and regluing. The intersection
curve is replaced by its two copies, while the rest part of S and RP 2 does
not change. Since the intersection curve consists of circles, its Euler
characteristic is zero. Therefore χ(∂Q) = χ(S) + χ(RP 2) = χ(S) + 1.
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Figure 32

On the other hand, χ(∂Q) is even since ∂Q is a closed oriented surface
(∂Q inherits orientation from Q). Thus χ(S) is odd. �

A one-sided connected surface in RP 3 contains a loop which is not
contractible in RP 3. Such a loop can be detected in the following way:
Consider the intersection of the surface with any one-sided transversal
surface (e. g., RP 2 or a surface obtained from the original one by a
small shift). The homology class of the intersection curve is the self-
intersection of the nonzero element of H2(RP

3 ; Z2). Since the self-
intersection is the nonzero element of H1(RP

3 ; Z2), the intersection
curve contains a component noncontractible in RP 3.

A two-sided connected surface in RP 3 can contain no loops noncon-
tractible in RP 3 (this happens, for instance, if the surface lies in an
affine part of RP 3). Of course, if a surface contains a loop noncon-
tractible in RP 3, it is not contractible in RP 3 itself. Moreover, then it
meets any one-sided surface, since the noncontractible loop realizes the
nonzero element of H1(RP

3 ; Z2) and this element has nonzero inter-
section number with the homology class realized by a one-sided surface.

If any loop on a connected surface S embedded in RP 3 is con-
tractible in RP 3 (which means that the embedding homomorphism
π1(S) → π1(RP

3) is trivial), then there is no obstruction to contract
the embedding, i. e., to construct a homotopy between the embedding
S → RP 3 and a constant map. One can take a cell decomposition
of S, contract the 1-skeleton (extending the homotopy to the whole
S), and then contract the map of the 2-cell, which is possible, since
π2(RP

3) = 0. A surface of this sort is called contractible (in RP 3).
It may happen, however, that there is no isotopy relating the em-

bedding of a contractible surface with a map to an affine part of RP 3.
The simplest example of a contractible torus which cannot be moved
by an isotopy to an affine part of RP 3 is shown in Figure 32.
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As it was stated above, the complement RP 3 rS of a connected sur-
face S two-sidedly embedded in RP 3 consists of two connected com-
ponents. If S is not contractible in RP 3 then both of them are not
contractible, since a loop on S noncontractible in RP 3 can be pushed
to each of the components. They may be positioned in RP 3 in the
same way.

The simplest example of this situation is provided by a one-sheeted
hyperboloid. It is homeomorphic to torus and its complement consists
of two solid tori. So, this is a Heegaard decomposition of RP 3. There
exists an isotopy of RP 3 made of projective transformation exchanging
the components. (3)

A connected surface decomposing RP 3 into two handlebodies is called
a Heegaard surface. Heegaard surfaces are the most unknotted sur-
faces among two-sided noncontractible connected surfaces. They may
be thought of as unknotted noncontractible surfaces.

If a connected surface S is contractible in RP 3, then the components
C1 and C2 can be distinguished in the following way: for one of them,
say C1, the inclusion homomorphism π1(C1) → π1(RP

3) is trivial, while
for the other one the inclusion homomorphism π1(C2) → π1(RP

3) is
surjective. This follows from the van Kampen theorem. The compo-
nent with trivial homomorphism is called the interior of the surface.
It is contractible in RP 3 (in the same sense as the surface is).

A contractible connected surface S in RP 3 is said to be unknotted,
if it is contained in some ball B embedded into RP 3 and divides this
ball into a ball with handles (which is the interior of S) and a ball with
handles with an open ball deleted. Any two unknotted contractible sur-
faces of the same genus are ambiently isotopic in RP 3. Indeed, first the
balls containing them can be identified by an ambient isotopy (see, e.
g., Hirsch [Hir-76], Section 8.3), then it follows from uniqueness of Hee-
gaard decomposition of sphere that there is an orientation preserving
homeomorphism of the ball mapping one of the surfaces to the other.
Any orientation preserving homeomorphism of a 3-ball is isotopic to
the identity.

At most one component of a (closed) surface embedded in RP 3

may be one-sided. Indeed, a one-sided closed surface cannot be zero-
homologous in RP 3 and the self-intersection of its homology class (which
is the only nontrivial element of H2(RP

3 ; Z2)) is the nonzero element
of H1(RP

3 ; Z2). Therefore any two one-sided surfaces in RP 3 inter-
sect.

Moreover, if an embedded surface has a one-sided component, then
all other components are contractible. The contractible components are
naturally ordered: a contractible component of a surface can contain
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other contractible component in its interior and this gives rise to a
partial order in the set of contractible components. If the interior
of contractible surface A contains a surface B, then one says that A
envelopes B.

The connected components of a surface embedded in RP 3 divide
RP 3 into connected regions. Let us construct a graph of adjacency
of these regions: assign a vertex to each of the regions and connect
two regions with an edge if the corresponding regions are adjacent to
the same connected two-sided component of the surface. Since the
projective space is connected and its fundamental group is finite, the
graph is contractible, i. e., it is a tree. It is called region tree of the
surface.

Consider now a (closed) surface without one-sided components. It
may contain several noncontractible components. They decompose the
projective space into connected domains, each of which is not con-
tractible in RP 3. Let us construct a graph of adjacency of these do-
mains: assign a vertex to each of the domains and connect two vertices
with an edge if the corresponding domains are adjacent. Edges of the
graph correspond to noncontractible components of the surface. For
the same reasons as above, this graph is contractible, i. e. it is a tree.
This tree is called the domain tree of the surface.

Contractible components of the surface are distributed in the do-
mains. Contractible components which are contained in different do-
mains cannot envelope one another. Contractible components of the
surface which lie in the same domain are partially ordered by envelop-
ing. They divide the domain into regions. Each domain contains only
one region which is not contractible in RP 3. If the domain does not
coincide with the whole RP 3 (i.e., the surface does contain noncon-
tractible components), then this region can be characterized also as
the only region which is adjacent to all the noncontractible compo-
nents of the surface comprising the boundary of the domain. Indeed,
contractible components of the surface cannot separate noncontractible
ones.

The region tree of a surface contains a subtree isomorphic to the
domain tree, since one can assign to each domain the unique noncon-
tractible region contained in the domain and two domains are adjacent
iff the noncontractible regions contained in them are adjacent. The
complement of the noncontractible domains tree is a union of adjacency
trees for contractible subdomains contained in each of the domains.

Let us summarize what can be said about topology of a spatial sur-
face in the terms described above.
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If a surface is one-sided (i. e., contains a one-sided component), then
it is a disjoint sum of a projective plane with handles and several
(maybe none) spheres with handles. Thus, it is homeomorphic to

Pg ∐ Sg1
∐ . . . Sgk

,

where ∐ denotes disjoint sum.
All two-sided components are contractible and ordered by envelop-

ing. The order is easy to incorporate into the notation of the topological
type above. Namely, place notations for components enveloped by a
component A immediately after A inside brackets 〈 〉. For example,

P0 ∐ S1 ∐ S1 ∐ S0〈S1 ∐ S0 ∐ S2〈S1 ∐ S0〉 ∐ S2〈S1 ∐ S0〉〉
denotes a surface consisting of a projective plane, two tori, which do not
envelope any other component, a sphere, which envelopes a torus and
a sphere without components inside them and a two spheres with two
handles each of which envelopes empty sphere and torus. To make the
notations shorter, let us agree to skip index 0, i. e. denote projective
plane P0 by P and sphere S0 by S, and denote the disjoint sum of k
fragments identical to each other by k followed by the notation of the
fragment. These agreements shorten the notation above to

P ∐ 2S1 ∐ S〈S1 ∐ S ∐ 2S2〈S1 ∐ S〉〉.
If a surface is two-sided (i. e. does not contain a one-sided compo-

nent), then it is a disjoint sum Sg1
∐ . . . Sgk

, of spheres with handles.
To distinguish in notations the components noncontractible in RP 3,
we equip the corresponding symbols with upper index 1. Although we
do not make any difference between two components of the comple-
ment of noncontractible connected surface (and there are cases when
they cannot be distinguished), in notations we proceed as if one of
the components is interior: the symbols denoting components of the
surface which lie in one of the components of the complement of the
noncontractible component A are placed immediately after the nota-
tion of A inside braces { }. Our choice is the matter of convenience. It
correspond to the well-known fact that usually, to describe a tree, one
introduces a partial order on the set of its vertices.

In these notations,

S1 ∐ S〈3S〉 ∐ S1
1{S3 ∐ 2S1

2{3S ∐ S1}}
denotes a two-sided surface containing three noncontractible compo-
nents. One of them is a torus, two others are spheres with two handles.
The torus bounds a domain containing a contractible empty torus and
a sphere enveloping three empty spheres. There is a domain bounded
by all three noncontractible components. It contains a contractible
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empty sphere with three handles. Each of the noncontractible spheres
with two handles bounds a domain containing empty contractible torus
and three empty spheres.

This notation system is similar to notations used above to described
isotopy types of curves in the projective plane. However, there is a
fundamental difference: the notations for curves describe the isotopy
type of a curve completely, while the notations for surfaces are far from
being complete in this sense. Although topological type of the surface
is described, knotting and linking of handles are completely ignored.
In the case when there is no handle, the notation above does provide
a complete description of isotopy type.

5.3. Restrictions on Topology of Real Algebraic Surfaces. As
in the case of real plane projective curves, the set of real points of a
nonsingular spatial surface of degree m is one-sided, if m is odd, and
two-sided, if m is even. Indeed, by the Bézout theorem a generic line
meets a surface of degree m in a number of points congruent to m
modulo 2. On the other hand, whether a topological surface embedded
in RP 3 is one-sided or two-sided, can be detected by its intersection
number modulo 2 with a generic line: a surface is one-sided, iff its
intersection number with a generic line is odd.

There are some other restrictions on topology of a nonsingular sur-
face of degree m which can be deduced from the Bézout theorem.

5.3.A (On Number of Cubic’s Components). The set of real points of a
nonsingular surface of degree three consists of at most two components.

Proof. Assume that there are at least three components. Only one of
them is one-sided, the other two are contractible. Connect with a line
two contractible components. Since they are zero-homologous, the line
should intersect each of them with even intersection number. Therefore
the total number of intersection points (counted with multiplicities) of
the line and the surface is at least four. This contradicts to the Bézout
theorem, according to which it should be at most three. �

5.3.B (On Two-Component Cubics). If the set of real points of a non-
singular surface of degree 3 consists of two components, then the com-
ponents are homeomorphic to the sphere and projective plane (i. e., this
is P ∐ S).

Proof. Choose a point inside the contractible component. Any line
passing through this point intersects the contractible component at
least in two points. These points are geometrically distinct, since the
line should intersect also the one-sided component. On the other hand,
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the total number of intersection points is at most three according to the
Bézout theorem. Therefore any line passing through the selected point
intersects one-sided component exactly in one point and two-sided com-
ponent exactly in two points. The set of all real lines passing through
the point is RP 2. Drawing a line through the selected point and a real
point of the surface defines a one-to-one map of the one-sided compo-
nent onto RP 2 and two-to-one map of the two-sided component onto
RP 2. Therefore the Euler characteristic of the one-sided component
is equal to χ(RP 2) = 1, and the Euler characteristic of the two-sided
component is 2χ(RP 2) = 2. This determines the topological types of
the components. �

5.3.C (Estimate for Diameter of Region Tree). The diameter of the
region tree6 of a nonsingular surface of degree m is at most [m/2].

Proof. Choose two vertices of the region tree the most distant from
each other. Choose a point in each of the coresponding regions and
connect the points by a line. �

5.3.D . The set of real points of a nonsingular surface of degree 4 has at
most two noncontractible components. If the number of noncontractible
components is 2, then there is no other component.

Proof. First, assume that there are at least three noncontractible com-
ponents. Consider the complement of the union of three noncon-
tractible components. It consists of three domains, and at least two of
them are not adjacent (cf. the previous subsection: the graph of adja-
cency of the domains should be a tree). Connect points of nonadjacent
domains with a line. It has to intersect each of the three noncontractible
components. Since they are zero-homologous, it intersects each of them
at least in two points. Thus, the total number intersection points is at
least 6, which contradicts to the Bézout theorem.

Now assume that there are two noncontractible components and
some contractible component. Choose a point p inside the contractible
component. The noncontractible components divide RP 3 into 3 do-
mains. One of the domains is adjacent to the both noncontractible
components, while each of the other two domains is bounded by a sin-
gle noncontractible component. If the contractible component lies in a
domain bounded by a single noncontractible component, then take a
point q in the other domain of the same sort, and connect p and q with

6Here by the diameter of a tree it is understood the maximal number of edges
in a simple chain of edges of the tree, i. e., the diameter of the tree in the internal
metric, with respect to which each edge has length 1.
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a line. This line meets each of the three components at least twice,
which contradicts to the Bézout theorem.

Otherwise (i. e. if the contractible component lies in the domain ad-
jacent to both noncontractible components), choose inside each of the
two other domains an embedded circle, which does not bound in RP 3.
Denote these circles by L1 and L2. Consider a surface Ci swept by
lines connecting p with points of Li. It realizes the nontrivial homol-
ogy class. Indeed, take any line L transversal to it. Each point of L∩Ci

corresponds to a point of the intersection of Li and the plane consist-
ing of lines joining p with L. Since Li realizes the nonzero homology
class, the intersection number of Li with a plane is odd. Therefore the
intersection number of L and Ci is odd. Since both C1 and C2 realizes
the nontrivial homology class, their intersection realizes the nontrivial
one-dimensional homology class. This may happen only if there is a
line passing through p and meeting L1 and L2. Such a line has to
intersect all three components of the quadric surface. Each of the com-
ponents has to be met at least twice. This contradicts to the Bézout
theorem. �

5.3.E . Remark. In fact, if a nonsingular quartic surface has two non-
contractible components then each of them is homeomorphic to torus.
It follows from an extremal property of the refined Arnold inequality
5.3.L. I do not know, if it can be deduced from the Bézout theorem.
However, if to assume that one can draw lines in the domains of the
complement which are not adjacent to both components, then it is not
difficult to find homeomorphisms between the components of the sur-
face and the torus, which is the product of these two lines. Cf. the
proof of 5.3.B .

5.3.F (Generalization of 5.3.D). Let A be a nonsingular real algebraic
surface of degree m in the 3-dimensional projective space. Then the
diameter of the adjacency tree of domains of the complement of RA is
at most [m/2]. If the degree is even and the diameter of the adjacency
tree of the connected components of the complement of the union of the
noncontractible components is exactly m/2, then there is no contractible
components.

The proof is a straightforward generalization of the proof of 5.3.D .
�

Surprisingly, Bézout theorem gave much less restrictions in the case
of surfaces than in the case of plane curves. In particular, it does not
give anything like Harnack Inequality. Most of restrictions on topol-
ogy of surfaces are analogous to the restrictions on flexible curves and
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were obtained using the same topological tools. Here is a list of the
restrictions, though it is non-complete in any sense.

The restrictions are formulated below for a nonsingular real algebraic
surface A of degree m in the 3-dimensional projective space. In these
formulations and in what follows we shall denote the i-th Betti number
of X over field Z2 (which is nothing but dimZ2

Hi(X ; Z2)) by bi(X).
In particular, b0(X) is the number of components of X. By b∗(X) we

denote the total Betti number, i. e.
∑infty

i=0 bi(X) = dimZ2
H∗(X ; Z2).

5.3.G (Generalized Harnack Inequality).

b∗(RA) ≤ m3 − 4m2 + 6m.

5.3.H . Remark. This is a special case of Smith-Floyd Theorem 3.2.B ,
which in the case of curves implies Harnack Inequality, see Subsections
3.2. It says that for any involution i of a topological space X

b∗(fix(i)) ≤ b∗(X).

Applying this to the complex conjugation involution of the complex-
ification CA of A and taking into account that dimZ2

H∗(CA ; Z2) =
m3 − 4m2 + 6m one gets 5.3.G . Applications to high-dimensional sit-
uation is discussed in Subsection ?? below.

5.3.I (Extremal Congruences of Generalized Harnack Inequality). If

b∗(RA) = m3 − 4m2 + 6m,

then
χ(RA) ≡ (4m− 3m2)/3 mod 16.

If b∗(RA) = m3 − 4m2 + 6m− 2, then

χ(RA) ≡ (4m−m3 ± 6)/3 mod 16.

5.3.J (Petrovsky - Oleinik Inequalities).

−(2m3 − 6m2 + 7m− 6)/3 ≤ χ(RA) ≤ (2m3 − 6m2 + 7m)/3.

Denote the numbers of orientable components of RA with positive,
zero and negative Euler characteristic by k+, k0 and k− respectively.

5.3.K (Refined Petrovsky - Oleinik Inequality). If m 6= 2 then

−(2m3 − 6m2 + 7m− 6)/3 ≤ χ(RA) − 2k+ − 2k0.

5.3.L (Refined Arnold Inequality). Either m is even, k+ = k− = 0 and

k0 = (m3 − 6m2 + 11m)/6,

or
k0 + k− ≤ (m3 − 6m2 + 11m− 6)/6.
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5.4. Surfaces of Low Degree. Surfaces of degree 1 and 2 are well-
known. Any surface of degree 1 is a projective plane. All of them are
transformed to each other by a rigid isotopy consisting of projective
transformations of the whole ambient space RP 3.

Nonsingular surfaces of degree 2 (nonsingular quadrics) are of three
types. It follows from the well-known classification of real nondegener-
ate quadratic forms in 4 variables up to linear transformation. Indeed,
by this classification any such a form can be turned to one of the fol-
lowing:

(1) +x2
0 + x2

1 + x2
2 + x2

3,
(2) +x2

0 + x2
1 + x2

2 − x2
3,

(3) +x2
0 + x2

1 − x2
2 − x2

3,
(4) +x2

0 − x2
1 − x2

2 − x2
3,

(5) −x2
0 − x2

1 − x2
2 − x2

3.

Multiplication by −1 identifies the first of them with the last and the
second with the fourth reducing the number of classes to three. Since
the reduction of a quadratic form to a canonical one can be done in
a continuous way, all quadrics belonging to the same type also can
be transformed to each other by a rigid isotopy made of projective
transformations.

The first of the types consists of quadrics with empty set of real
points. In traditional analytic geometry these quadrics are called imag-
inary ellipsoids. A canonical representative of this class is defined by
equation x2

0 + x2
1 + x2

3 + x2
4 = 0.

The second type consists of quadrics with the set of real points home-
omorphic to sphere. In the notations of the previous section this is S.
The canonical equation is x2

0 + x2
1 + x2

2 − x2
3 = 0.

The third type consists of quadrics with the set of real points home-
omorphic to torus. They are known as one-sheeted hyperboloids. The
set of real points is not contractible (it contains a line), so in the no-
tations above it should be presented as S1

1 . The canonical equation is
x2

0 + x2
1 − x2

2 − x2
3 = 0.

Quadrics of the last two types (i. e., quadrics with nonempty real
part) can be obtained by small perturbations of a union of two real
planes. To obtain a quadric with real part homeomorphic to sphere, one
may perturb the union of two real planes in the following way. Let the
plane be defined by equations L1(x0, x1, x2, x3) = 0 and L2(x0, x1, x2, x3) =
0. Then the union is defined by equation L1(x0, x1, x2, x3)L2(x0, x1, x2, x3) =
0. Perturb this equation adding a small positive definite quadratic
form. Say, take

L1(x0, x1, x2, x3)L2(x0, x1, x2, x3) + ε(x2
0 + x2

1 + x2
2 + x2

3) = 0
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Figure 33. Two-sheeted hyperboloid as a result of
small perturbation of a pair of planes.

Figure 34. One-sheeted hyperboloid as a result of small
perturbation of a pair of planes.

with a small ε > 0. This equation defines a quadric. Its real part
does not meet plane L1(x0, x1, x2, x3) = L2(x0, x1, x2, x3), since on the
real part of the quadric the product L1(x0, x1, x2, x3)L2(x0, x1, x2, x3)
is negative. Therefore the real part of the quadric is contractible in
RP 3. Since it is obtained by a perturbation of the union of two planes,
it is not empty, provided ε > 0 is small enough. As easy to see, it is
not singular for small ε > 0. Cf. Subsection ??. Of course, this can be
proved explicitely, as an exercise in analytic geometry. See Figure 33

To obtain a noncontractible nonsingular quadric (one-sheeted hyper-
boloid), one can perturb the same equation L1(x0, x1, x2, x3)L2(x0, x1, x2, x3) =
0, but by a small form which takes both positive and negative values
on the intersection line of the planes. See Figure 34.

Nonsingular surfaces of degree 3 (nonsingular cubics) are of five
types. Here is the complete list of there topological types:

P, P ∐ S, P1, P2, P3.

Let us prove, first, that only topological types from this list can be
realized. Since the degree is odd, a nonsingular surface has to be one-
sided. By 5.3.D if it is not connected, then it is homeomorphic to
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Figure 35. Constructing cubic surfaces of types P ∐S,
P , P1 and P2.

Figure 36. Constructing a cubic surface of type P3.

P ∐ S. By the Generalized Harnack Inequality 5.3.G , the total Betti
number of the real part is at most 33 − 4 × 32 + 6 × 3 = 9. On the
other hand, the first Betti number of a projective plane with g handles
is 1 + 2g and the total Betti number b∗(Pg) is 3 + 2g. Therefore in the
case of a nonsingular cubic with connected real part, it is of the type
Pg with g ≤ 3.

All the five topological types are realized by small perturbations of
unions of a nonsingular quadric and a plane transversal to one another.
This is similar to the perturbations considered above, in the case of
spatial quadrics. See Figures 35 and 36.

An alternative way to construct nonsingular surfaces of degree 3 of all
the topological types is provided by a connection between nonsingular
spatial cubics and plane nonsingular quartics. More precisely, there is
a correspondence assigning a plane nonsingular quartic with a selected
real double tangent line to a nonsingular spatial cubic with a selected
real point on it. It goes as follows. Consider the projection of the cubic
from a point selected on it to a plane. The projection is similar to the
well-known stereographic projection of a sphere to plane.



Chapter 2. Constructions by Evolving of
Semi-Quasihomogeneous Singularities

6. Perturbations of Curves with Semi-Quasihomogeneous

Singularities

The classical constructions in the topological theory of real algebraic
curves (i. e., the constructions considered above) proceed according
to the following general scheme. First one constructs two nonsingular
curves which are transversal to one another, and then one slightly per-
turbs their union to remove the singularities. In his classification of
curves of degree 6, Gudkov departed from this scheme; however, as be-
fore, all of the curves that he perturbed had only nondegenerate double
points. There are two circumstances which stand in the way of allowing
more complicated singularities when constructing real algebraic curves
with prescribed topology. In the first place, if the singularities are
not very complicated, they give nothing more than one obtains with
nondegenerate double points—to get something new one must go to
nondegenerate 5-fold multiple points or to points of tangency of three
branches. In the second place, one needs a special technique in or-
der to carry out controlled perturbations of curves with complicated
singularities.

In 1980 I proposed a method of constructing perturbations of curves
with a semi-quasihomogeneous singularity. From a topological point
of view, the perturbation causes a neighborhood of the singular point
to be replaced by a model curve fragment prepared in advance. This
technique made it possible to enlarge the possible constructions signifi-
cantly. We could then complete the isotopy classification of nonsingular
curves of degree 7 and to find counter-examples to Ragsdale Conjec-
ture.

This section is devoted to developing perturbation techniques for
curves with singularities.

6.1. Newton Polygons. Let f be a polynomial in two variables over
C or R: f(x, y) =

∑

i,j aijx
iyj. The monomials which occur in f can

be depicted in a natural way on the plane: to a monomial aijx
iyj

we associate the point (i, j) ∈ R2. It was Newton who noticed the
usefulness of this representation of the monomials: it turns out that
the relative position of these points (i, j) has a remarkable connection
with the role played by the corresponding monomials for various special
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values of x and y. A lot of information about f and about the geometry
of the curve f(x, y) = 0 is contained even in the convex hull of the set
{(i, j) ∈ R2|aij 6= 0}, which we denote ∆(f) and call the Newton
polygon of f .

Here are some obvious connections between the geometry of the curve
defined by the equation f(x, y) = 0 and the properties of the Newton
polygon ∆(f).

The polygon ∆(f) does not contain (0, 0) if and only if the curve
f(x, y) = 0 passes through the point (0, 0).

The polygon ∆(f) does not contain (0, 0), but does contain (1, 0)
or (0, 1) if and only if the origin (0, 0) is a regular point of the curve
f(x, y) = 0.

More generally, the point (0, 0) is an n-fold singular point of the
curve f(x, y) = 0 if and only if n is the least number such that the line
x+ y = n intersects ∆(f).

These facts are included in the following principle, various mani-
festations of which we will encounter often: the behavior of the curve
f(x, y) = 0 near the origin is determined to a first approximation by the
monomials of f corresponding to the points of the part of the boundary
∆(f) which faces the origin. This is because those monomials are the
leading terms of f as x and y tend to zero.

Not only invariants of the singular points of the curve f(x, y) = 0, but
also several global invariants can be expressed in terms of the Newton
polygon ∆(f), see [?], [?]. In particular, if the curve f(x, y) = 0 has no
complex singular points in (C r 0) × (C r 0) (i. e., in the complement
of the coordinate axes), then its genus is equal to the number of points
with integer coordinates lying inside ∆(f).

Given a set Γ ⊂ R2 and a polynomial f(x, y) =
∑

aijx
iyj, we let fΓ

denote the polynomial
∑

(i,j)∈Γ aijx
iyj, i. e., the sum of the monomials

of f which correspond to points in Γ; we shall call this the Γ-truncation
of f .

The definition of the Newton polygon of a polynomial in two variables
carries over in the obvious way to any multivariate polynomial (where,
of course, we speak of the Newton polyhedron rather than the Newton
polygon). If our polynomial is a homogeneous polynomial a of degree
m in three variables, then it turns out to be a polygon lying inside the
triangle defined by the conditions

i0 + i1 + i2 = m, i0 ≥ 0, i1 ≥ 0, i2 ≥ 0.

But in practice it is convenient to replace this polygon by its projection
onto the plane i0 = 0, which is the Newton polygon of the polynomial
a(1, x, y). That is, we represent the monomials in a in tabular form on
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the plane, associating a monomial aijx
m−i−j
0 xi

1x
j
2 to the point (i, j) ∈

R2. This will be our convention: thus, we let ∆(a) denote the Newton
polygon of the polynomial a(1, x, y).

What was said before about the connection between the geometry
of an affine curve and the geometry of its Newton polygon has obvious
analogues in the projective situation. In particular, the behavior of a
degree m curve a(x0, x1, x2) = 0 nears the points (1 : 0 : 0), (0 : 1 : 0),
and (0 : 0 : 1) is determined to a first approximation by the monomials
of a corresponding to the points of the part of the boundary ∆(a) which
faces (0, 0), (m, 0) and (0, m), respectively.

6.2. Singularities of a Hypersurface. Much of what we say applies
to either real or complex curves. In such cases I will use the following
notation to encompass both situations. We let K denote the ground
field (R or C). When we discuss the singular points of algebraic curves,
it costs us almost nothing to make another extension of the type of
objects under consideration by passing from singularities of algebraic
curves to singularities of analytic curves. Finally, many of the state-
ments carry over without change to the case of isolated singularities
on a hypersurface. One could go even further and not limit oneself
to hypersurfaces—but this would lead to essential complications. In
this subsection we shall consider some general definitions and results
on isolated singularities of real or complex analytic hypersurfaces.

Let G ⊂ Kn be an open set, and let ϕ : G → K be an analytic
function. For U ⊂ G we let VU(ϕ) denote the set {x ∈ U |ϕ(x) = 0}.
By a singularity of the hypersurface VG(ϕ) at the point x0 ∈ UG(ϕ)
we mean the class of germs of hypersurfaces which are diffeomorphic
to the germ of the hypersurface VG(ϕ) at x0. In other words, two
hypersurfaces VG(ϕ) and VH(ψ) have the same singularity at the points
x0 and y0, if there exist neighborhoods M and N of x0 and y0 such that
the pairs (M,VM(ϕ)), (N, VN(ψ)) are diffeomorphic.

When we consider the singularity of a hypersurface at a point x0,
to simplify the formulas we shall suppose that x0 = 0. The Milnor
number of the hypersurface VG(ϕ) at 0 is the dimension

dimK K[[x1, . . . , xn]]/(∂f/∂x1, . . . , ∂f/∂xn)

of the quotient of the formal power series ring by the ideal generated
by the partial derivatives ∂f/∂x1, . . . , ∂f/∂xn of the Taylor series f
of the function ϕ at 0. This number is an invariant of the singular-
ity (see [AVGZ-82]). If it is finite, then we say that the singularity
has finite multiplicity . In order for the singularity of the hypersur-
face VG(ϕ) at zero to have finite multiplicity, it is necessary (and when
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K = C it is also sufficient) that it be isolated, i.e., that there exist
a neighborhood U ⊂ Kn of zero which does not contain nonzero sin-
gular points of VG(ϕ). In the case of an isolated singularity, a ball
B ⊂ Kn centered at zero of sufficiently small radius has boundary ∂B
which intersects VG(ϕ) only at nonsingular points and only transver-
sally, and the pair (B, V∂B(ϕ)) is homeomorphic to the cone over its
boundary (∂B, V∂B(ϕ)) (see [?], Theorem 2.10). In this case the pair
(∂B, V∂B(ϕ)) is called the link of the singularity of VG(ϕ) at 0.

The next theorem shows that the class of singularities of finite mul-
tiplicity coincides with the class of singularities of finite multiplicity on
algebraic hypersurfaces.

6.2.A (Tougeron’s Theorem (see, e. g., [AVGZ-82], Section 6.3)). If the
singularity at 0 of the hypersurface VG(ϕ) has finite Milnor number µ,
then there exist a neighborhood U of 0 in Kn and a diffeomorphism h
from this neighborhood onto a neighborhood of 0 in Kn such that

h(VU(ϕ)) = Vh(U)(f(µ+1)),

where f(µ+1) is the degree µ+ 1 Taylor polynomial of ϕ.

The notion of Newton polyhedron carries over in a natural way
to power series. The Newton Polyhedron ∆(f) of the series f(x) =
∑

ω∈Zn
aωx

ω (where xω = xω1

1 x
ω2

2 · · ·xωn

n ) is the convex hull of the set
{ω ∈ Rn|aω 6= 0}. (Unlike the case of a polynomial, the Newton poly-
hedron ∆(f) of a power series may have infinitely many faces.) But
in the theory of singularities the notion of the Newton diagram is of
greater importance. The Newton diagram Γ(f) of a power series f is
the union of the compact faces of the Newton polyhedron which face
the origin. From the definition of the Milnor number it follows that, if
the singularity of VG(ϕ) at 0 has finite multiplicity, then the Newton
diagram of the Taylor series of ϕ is compact, and its distance from
each of the coordinate axes is at most 1. It follows from Tougeron’s
theorem that in this case adding a monomial of the form xmi

i to ϕ with
mi sufficiently large does not change the singularity. Thus, without
changing the singularity, one can get the Newton diagram to touch the
coordinate axes.

6.3. Evolving Singularities. Now let the function ϕ : G → K be
included as ϕ0 in a family of analytic functions ϕt : G → K with
t ∈ [0, t0], and suppose that this is an analytic family in the sense that
the function G× [0, t0] → K : (x, t) 7→ ϕt(x) which it determines is real
analytic. If the hypersurface VG(ϕ) has an isolated singularity at x0,
and if there exists a neighborhood U of x0 such that the hypersurfaces
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VG(ϕt) with t ∈ [0, t0] do not have singular points in U , then we say
that the family of functions ϕt with t ∈ [0, t0] evolves7 the singularity
of VG(ϕ) at x0.

If the family ϑt with t ∈ [0, t0] evolves the singularity of the hyper-
surface VG(ϑ0) at x0, then there exists a ball B ⊂ Kn centered at x0

such that
(i) for t ∈ [0, t0] the sphere ∂B intersects VG(ϑt) only at nonsingular

points of the hypersurface and only transversally;
(ii) for t ∈ (0, t0] the ball B contains no singular points of the hyper-

surface VG(ϑt);
(iii) the pair (B, VB(ϕ0)) is homeomorphic to the cone over (∂B, V∂B(ϕ0)).
Then the family of pairs (B, VB(ϑt)) with t ∈ [0, t0] is called the

evolving of the germ of the hypersurface VG(ϕ0) at the point x0. (Fol-
lowing the accepted terminology in the theory of singularities, we would
be more correct in saying not a family of pairs, but rather a family of
germs or even germs of a family; however, from a topological point of
view, which is more natural in discussing the topology of real algebraic
varieties, the distinction between a family of pairs satisfying (i) and
(ii) and the corresponding family of germs is of no importance, and so
we shall ignore it.)

Conditions (i) and (ii) imply the existence of a smooth isotopy ht :
B → B with t ∈ (0, t0], such that ht0 = id and ht(VB(ϕt0)) = VB(ϕt),
so that the pairs (B, VB(ϕt)) with t ∈ (0, t0] are diffeomorphic to one
another.

7This word has not been used before in the literature. Instead, the expressions
“removing singularities” and “perturbing singularities” are used. The first term
does not seem to me to be a good choice, since what occurs is not so much an
annihilation of the singularity as its replacement by a rather complicated object,
and another way of removing a singularity is to resolve it. The second expression
is also unfortunate, since the perturbed singularity is no longer a singularity, while
in other situations (perturbation of curves, operators, etc.) one does not leave the
class of objects under consideration (a perturbed operator is still an operator, for
instance). This terminology presumably arose because one has a perturbation of
the singular hypersurface. The term “evolving” is close in meaning to the word
“unfolding,” which refers to a versal deformation of a singularity. An unfolding is a
deformation from which all deformations of the singularity, including the evolvings
in our sense, can be obtained. Since the term “unfolding” has already been used,
and the word “evolving” is available and has much the same meaning, it seems
to me to be an appropriate term in this context. The word “smoothing” is also
less suitable, since it means the introduction of a differentiable structure. In [?]
I proposed a Russian word raspuskanie, which was translated as dissipation. The
Russian word has a lot of meanings. It may associate with unfolding a flower and
dissolving a parlament. I think the word evolving suggests better collection of
associations than the word dissipation.
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If we have two germs determining the same singularity, then an evolv-
ing of one of them obviously corresponds to a diffeomorphic evolving
of the other germ. Thus, we may speak not only of evolvings of germs,
but also of evolvings of singularities of a hypersurface.

The following three topological classification questions arise in con-
nection with evolvings.

6.3.A. Up to homeomorphism, what manifolds can appear as VB(ϕt) in
evolvings of a given singularity?

6.3.B . Up to homeomorphism, what pairs can appear as (B, VB(ϕt)) in
evolvings of a given singularity?

Two evolvings (B, VB(ϕt)) with t ∈ [0, t0] and (B′, VB′(ϕ′
t)) with

t ∈ [0, t′0] are said to be topologically equivalent if there exists an isotopy
ht : B → B′ with t ∈ [0,min(t0, t

′
0)], such that h0 is a diffeomorphism

and VB′(ϕ′
t) = htVB(ϕt) for t ∈ [0,min(t0, t

′
0)].

6.3.C . Up to topological equivalence, what are the evolvings of a given
singularity?

These questions are analogous to the classification problems 1.1.A
and 1.1.B discussed above. Obviously, 6.3.C is a refinement of 6.3.B ,
which, in turn, is a refinement of 6.3.A (since in 6.3.C we are interested
not only in the type of the pair obtained from an evolving, but also the
manner in which the pair is attached to the link of the singularity).

In the case K = R, with which we are especially concerned, these
questions have been answered only for a very small number of singu-
larities. In Section 7 below we shall examine some of these cases. In
general, the topology of evolvings of real singularities has a develop-
ment which runs parallel to the topology of nonsingular real algebraic
varieties. In particular, one encounters prohibitions (see [KV-88]) and
constructions (see below).

In the case K = C, the evolving of a given singularity is unique
from all three points of view, and there is an extensive literature (see,
for example, [?]) devoted to its topology (i. e., questions 6.3.A and
6.3.B). Incidentally, if we want to formulate questions for K = C

which are truly analogous to questions 6.3.A–6.3.C for K = R, then
we have to replace evolvings by deformations with singular fibers and
one-dimensional complex bases, and the manifolds VB(ϕt) and the pairs
(B, VB(ϕt)) have to be considered along with monodromy transforma-
tions. It is reasonable to suppose that there are interesting connec-
tions between questions 6.3.A–6.3.C for a real singularity and their
analogues for the complexification of the singularity.
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6.4. Complex Topological Charcteristics of an Evolving. We
return to singularities of plane curves. Consider an isolated singularity
of a plane complex curve. Its link (∂B, V∂B(ϕ)) is a pair consisting of
the 3-sphere ∂B = S3 and a one-dimensional submanifold V∂B(ϕ) of
S3. So it is a link in the sense of classical knot theory, cf. Rolfsen [?].
Each component of this link bounds inside the ball B a disk contained
in the curve and containing the singular point.

Assume now that the curve above is defined by a real equation and
the singular point is real (i. e., belongs to R2). Then B is invariant
under the complex conjugation conj and intersects R2 in a disk. Denote
this disk by D. The set of complex points of the curve contained in
B is invariant with respect to the complex conjugation. Some of the
disks bounded by the components of V∂B(ϕ) in B are invariant with
respect to the complex conjugation. An invariant disk meets D in an
arc of VD(ϕ), which passes through the singular point and divides the
disk into two halves. The halves are oriented (as pieces of a complex
curve) and induce orientations on the arc. The orientations induced
from different halves are opposite to each other. This gives a natural
one-to-one correspondance between the orientations of the arc and the
halves of the disk containing the arc.

Disks noninvariant under conj are mapped by conj to each other.
They are organized into pairs of conjugate disks. A nonivariant disk
contains only one real points: the singular point under consideration.

The set VB(ϕ) is divided by VD(ϕ) into many components (two in
an invariant disk and one in a noninvariant one). The components
can be organized into two groups which are mapped one to another
by complex conjugation. It may be done in various ways: one may
describe selection of half-disks by an orientation of the real arcs.

Orientations of real branches and a half of their complexification.
Evolvings of type I and II. Type of perturbed curve. Complex orienta-
tion of evolving and of the perturbed curve.

6.5. Nondegenerate r-Fold Points. A point (x0, y0) of the curve
f(x, y) = 0 is said to be nondegenerate r-fold point if it has multiplicity
r (i. e., the partial derivatives of f through order r−1 inclusive vanish
at the point, but not all r-th partials vanish) and if the curve

fxr(x0, y0)x
r + rfxr−1y(x0, y0)x

r−1y + · · ·+ fyr(x0, y0)y
r = 0

is reduced (i. e., the polynomial
∑r

k=0C
k
r fxkyr−k(x0, y0)x

kyr−k is not
divisible by the square of any polynomial of positive degree). This no-
tion is clearly a generalization of the notion of a nondegenerate double
point.
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When (x0, y0) = (0, 0), this definition has the following obvious con-
venient reformulation in terms of the coefficients of f : the point (0, 0)
is a nondegenerate r-fold point of the curve f(x, y) = 0 if and only
if the Newton polygon ∆(f) is supported by the part of its boundary
facing the origin on the segment Γ joining the points (r, 0) and (0, r)
(i.e., the Newton diagram Γ(f) lies on Γ), and the curve fΓ(x, y) = 0
consists of distinct lines.

There is also a geometrical reformulation of the definition.

6.5.A. A point on a curve is a nondegenerate r-fold point if and only
if there are exactly r branches of the curve passing through it, these
branches are nonsingular, and they have distinct tangents.

Before proving this, I want to make a preliminary remark that is of
independent interest.

Consider the homothety C2 → C2 : (x, y) 7→ (tx, ty). It takes the
curve f(x, y) = 0 to the curve f(t−1x, t−1y) = 0. The monomial aijx

iyj

in f(x, y) corresponds to the monomial aijt
−i−jxiyj in f(t−1x, t−1y), so

that the monomials on the line i + j = n are multiplied by t−n in the
homothety (x, y) 7→ (tx, ty). In addition, the equation of the curve
can be multiplied through by any number, in particular by tρ, without
changing the curve. Thus, the homothety (x, y) 7→ (tx, ty) corresponds
to the following transformation of the equation of the curve: for some
fixed ρ, multiply the monomials on the line i+j = n (i.e., the monomials
aijx

iyj with i+ j = n) by tρ+n.
We now prove the above geometrical reformulation 6.5.A of the def-

inition of a nondegenerate r-fold point. It is sufficient to consider the
case when the singularity is at the origin. Suppose that the origin is a
nondegenerate r-fold point. We apply the homothety (x, y) 7→ (tx, ty)
to the curve, at the same time performing the above transformation on
the equation with ρ = r. The monomials in Γ remain unchanged, and
the other monomials are multiplied by negative powers of t. We let t ap-
proach ∞. Then the equation approaches fΓ(x, y) = 0, i. e., the equa-
tion of a union of r distinct lines through (0, 0). This union intersects
any sphere in C2 centered at (0, 0) transversally in a union of r great
circles. Under a small perturbation of the equation, the intersection
remains transversal, and it consists of r unknotted circles with pairwise
linking coefficients equal to 1. Consequently, if the curve is subjected
to the homothety for t sufficiently large, it will have r branches through
the origin, and they will be nonsingular and transversal to one another.
Thus, the same is true of the branches of the original curve.

Conversely, suppose that the curve f(x, y) = 0 has r branches at
the origin, and they are nonsingular and transversal to one another.
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Then the origin is an r-fold point, and the Newton polygon ∆(f) is
situated on the segment Γ. Under the homothety (x, y) 7→ (tx, ty)
with t→ ∞ the curve f(x, y) = 0 approaches the curve fΓ(x, y) = 0 in
a neighborhood of the origin. On the other hand, each of the branches
stretches out into a line (the tangent line to the branch). Consequently,
fΓ(x, y) = 0 is a union of distinct lines through (0, 0), i. e., (0, 0) is a
nondegenerate r-fold point of the curve f(x, y) = 0.

6.6. Evolving of a Nondegenerate r-Fold Point. Our next goal is
to construct perturbations of a curve with nondegenerate r-fold point
under which the topology of the curve in a neighborhood of the point
changes in a way that can be controlled.

First, consider a special case—when the curve to be perturbed con-
sists of r distinct lines through the origin. The Newton polygon of this
curve is a segment of the line Γ joining the points (r, 0) and (0, r). (It
clearly either coincides with Γ or is strictly smaller, and the latter can
happen when one or both of the extreme monomials ar,0x

r, a0,ry
r are

missing.)
The argument used above to prove the equivalence of the two defini-

tions of a nondegenerate r-fold point (6.5.A) gives us an indication of
how to construct the perturbations. We take an affine curve of degree
r which has r asymptotes whose directions coincide with those of our
given lines. The Newton polygon of such a curve is contained in the
triangle with vertices (0, 0), (r, 0), (0, r), and the defining polynomial
can be normalized in such a way that its Γ-truncation coincides with
the polynomial defining our original curve. We apply the homothety
(x, y) 7→ (tx, ty) to the affine curve, where, as before, we also transform
the equation, again with ρ = r. The monomials in Γ remain unchanged,
and the other monomials are multiplied by negative powers of t (aijx

iyj

is multiplied by tr−i−j). We let t approach zero. Then in the limit we
obtain the equation of the original curve, i.e., a union of r lines, while
the curves of the family are all images of the same affine curve under
different homotheties. Thus, an affine curve of degree r with r distinct
asymptotes may be regarded as the result of a perturbation of a union
of r lines through a point.

In the more general case—when the curve to be perturbed has degree
greater than r and, as above, it has the origin as a nondegenerate r-fold
point—the monomials of degree > r do not have a noticeable influence
near the origin (compare with Section 6.5). Hence, it is natural to
expect that the same adjustment to the equation as above will have a
similar effect. But before examining this generalization, we make more
precise what we mean by nearby curves.
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We say that a smooth submanifold A of a manifold X approximates
the smooth submanifold B of X in the open set U ⊂ X if, for some
tubular neighborhood T of B ∩ U in U , the intersection A ∩ U is con-
tained in T and is a section of the tubular fibration T → B ∩ U .

It follows from the implicit function theorem (see 1.5.A(3) and Sub-
section 1.7 above) that, if the degree m curve a(x0, x1, x2) = 0 has no
singular points in the closure of the open set U ⊂ RP 2, then in the
space RCm of real curves of degree m it has a neighborhood all curves
of which have no singular points in U and approximate one another in
U .

Let a(x0, x1, x2) = 0 be a real projective curve of degree m which
has no singular points except for the point (1 : 0 : 0), and suppose
that (1 : 0 : 0) is a nondegenerate r-fold point. Let g(x, y) = 0 be
a nonsingular real affine curve of degree r, and suppose that g(x, y)
and a(1, x, y) have the same Γ-truncation, where Γ is the line segment
joining (r, 0) and (0, r). We set

f(x, y) = a(1, x, y),

ht(x, y) = f(x, y) + trg(t−1x, t−1y) − fΓ(x, y),

ct(x0, x1, x2) = a(x0, x1, x2) + trxm
0 g(x1, x

−1
0 t−1, x2x

−1
0 t−1)

−aΓ(x0, x1, x2).

Since clearly ct(1, x, y) = ht(x, y) and c0(x0, x1, x2) = a(x0, x1, x2), it
follows that the family of curves ct(x0, x1, x2) = 0 is a perturbation of
the curve a(x0, x1, x2) = 0.

6.6.A. There exist circular neighborhoods U ⊃ V of the point (1 : 0 : 0)
in RP 2 such that for t > 0 sufficiently small the curve ct(x0, x1, x2) = 0
is approximated by the curve a(x0, x1, x2) = 0 outside V , and is approx-
imated by the curve xr

0g(t
−1x1x

−1
0 , t−1x2x

−1
0 ) = 0 inside U ( i. e., the

latter curve is the image of the curve g(x, y) = 0 under the compo-
sition of the homothety (x, y) 7→ (tx, ty) and the canonical imbedding
R2 → RP 2 : (x, y) 7→ (1 : x : y)).

Proof. We include the family of polynomials ht in a larger family

hs,t(x, y) = s−rf(sx, sy) + trg(t−1x, t−1y) − fΓ(x, y).

The homothety (x, y) 7→ (ux, uy) takes the curve hs,t(x, y) = 0 to the
curve urhs,t(u

−1x, u−1y) = 0, but we have

urhs,t(u
−1x, u−1y) =s−rurf(su−1x, su−1y) + trurg(t−1u−1x, t−1u−1y)

− fΓ(x, y) = hsu−1,tu(x, y).
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Thus, the curves hs,t(x, y) = 0 corresponding to points (s, t) of the
parameter plane which lie on the hyperbolas st = const can be obtained
from one another by means of homotheties.

Set cs,t(x0, x1, x2) = xm
0 hs,t(x1x

−1
0 , x2x

−1
0 ). The curve c0,0(x0, x1, x2) =

0 is clearly the union of the (m− r)-fold line xm−r
0 = 0 and the r lines

through (1 : 0 : 0) defined by the equation aΓ(x0, x1, x2) = 0. The
origin in the parameter plane has a circular neighborhood P such that
for (s, t) ∈ P the curves hs,t(x, y) = 0 approximate one another in the
annulus 1 ≤ x2 + y2 ≤ 4, and, in particular, they approximate the
curve fΓ(x, y) = 0 there.

Take (s0, 0) ∈ P with s0 > 0. The corresponding curve cs0,0(x0, x1, x2) =
0 is obtained from the curve a(x0, x1, x2) = 0 by the dilatation (x0 : x1 :
x2) 7→ (x0 : s−1x1 : s−1x2) (Figure 37). Like the latter curve, it has a
singularity only at (1 : 0 : 0). If we go a sufficiently small distance from
(s0, 0) in the region t > 0, this singularity is evolved, while outside some
neighborhood of the singularity (say, the disc x2 + y2 < 1) the curve
cs0,t(x0, x1, x2) = 0 is approximated by the curve cs0,0(x0, x1, x2) = 0.

In exactly the same way, the curve h0,t0(x, y) = 0 corresponding to
(0, t0) ∈ P with t0 > 0 can be obtained from the curve g(x, y) = 0 by
the contraction (x, y) 7→ (t0x, t0y). If we go a sufficiently small distance
from (0, t0) in the region s > 0, the curve hs,t(x, y) = 0 experiences only
a small isotopy in the disc x2 + y2 ≤ 4, and is approximated by the
curve h0,t0(x, y) = 0, i. e., by the curve g(t−1

0 x, t−1
0 y) = 0.

We choose points (s0, t1) and (s1, t0) close to (s0, 0) and (0, t0) in the
above sense, where s0t1 = s1t0, i. e., they lie on the same hyperbola
st = const. When we move from (s1, t0) to (s0, t1) along this hyperbola,
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the curve cs,t(x0, x1, x2) = 0 is subjected to an isotopy made up of
homotheties, i. e., contractions toward the point (1 : 0 : 0), and it
turns into the curve cs0,t1(x0, x1, x2) = 0. Since the point (s, t) does
not leave P in the course of this isotopy, it follows that the curve does
not change in an essential way in the annulus 1 ≤ x2 + y2 ≤ 4; it
merely slides along the curve fΓ(x, y) = 0, at all times approximating
that curve. Hence, the curve hs0,t1(x, y) = 0 approximates the curve
h0,t1(x, y) = 0 (i. e., the image of the curve g(x, y) = 0 under the
contraction (x, y) 7→ (t1x, t1y)) not only in the disc x2 + y2 ≤ 4s2

1s
−2
0

(i. e., in the image of the disc x2 + y2 ≤ 4 under the homothety) but
even in the disc x2 + y2 ≤ 4 itself.

We now notice that the curve c1,s0t1(x0, x1, x2) = 0 is the image of
the curve cs0,t1(x0, x1, x2) = 0 under the homothety (x0 : x1 : x2) 7→
(x0 : s0x1 : s0x2). Thus, outside the disc x2 + y2 < s2

0 the curve
cs0t1(x0, x1, x2) = 0 is approximated by the curve c1,0(x0, x1, x2) = 0,
i.e., by the original curve a(x0, x1, x2) = 0, and inside the disc x2+y2 ≤
4s2

0 it is approximated by the curve c0,s0t1(x0, x1, x2) = 0, i.e., by the
image of the curve xr

0g(x1x
−1
0 , x2x

−1
0 ) under the contraction (x0 : x1 :

x2) 7→ (x0 : s0t1x1 : s0t1x2). Hence, if we set t = s0t1 and take U to be
the disc x2 + y2 ≤ 4s2

0 and V to be the disc x2 + y2 ≤ s2
0, we obtain the

objects whose existence is asserted in the theorem. �

6.7. Quasihomogeneity. The method of perturbing a curve with a
nondegenerate r-fold point has an immediate generalization to a much
broader class of singularities. Roughly speaking, the generalization
comes from replacing the homotheties (x, y) 7→ (tx, ty) by maps of the
form (x, y) 7→ (tux, tvy) with relatively prime integers u and v—such
maps are called quasihomotheties . As in the case of homotheties, the
quasihomotheties with fixed exponents u and v form a one-parameter
group of linear transformations.

Under the action of a quasihomothety (x, y) 7→ (tux, tvy) the curve
given by the equation f(x, y) = 0 with f(x, y) =

∑

aijx
iyj, goes to the

curve f(t−ux, t−vy) = 0, or equivalently, to the curve tρf(t−ux, t−vy) =
0. The monomial aijx

iyj in f(x, y) correspond to the monomial aijt
ρ−ui−vjxiyj

in tρf(t−ux, t−vy); thus, under the quasihomothety (x, y) 7→ (tux, tvy)
the monomials on the line ui+ vj = n are multiplied by tρ−n.

The curves which are defined by quasihomogeneous polynomials of
weight u, v, i.e., polynomials whose Newton polygon lies on the line
ui+ vj = const, are invariant relative to all quasihomotheties (x, y) 7→
(tux, tvy) with fixed u and v. Such a curve is a union of orbits of the
action of the group of quasihomotheties with exponents u and v, i.e.,
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a union of curves of the form αxv + βyu = 0. We call the latter curve
a quasiline of weight u, v.

We now consider the corresponding singularities of plane curves. We
shall suppose that the singularity of the curve f(x, y) = 0 that is being
examined is at the origin. If the Newton polygon ∆(f) has a side Γ
facing the origin such that the Γ-truncation defines a curve with no mul-
tiple components (i.e., if fΓ(x, y) is not divisible by the square of any
polynomial of nonzero degree), then we say that the curve f(x, y) = 0
has a semi-quasihomogeneous singularity at the origin. If the segment
Γ is on the line iu+ vj = r with u and v relatively prime, then we say
that the pair u, v is the weight of the semi-quasihomogeneous singular-
ity and r is its degree.

There is one essential difference between semi-quasihomogeneous sin-
gularities and nondegenerate singularities. In the above definition of
semi-quasihomogeneity, the choice of coordinate system plays a much
more important role than in the definition of a nondegenerate r-fold
point. In fact, if a semi-quasihomogeneous singular point is not a non-
degenerate singularity, then the coordinate axis corresponding to the
smaller weight plays a special role. The singular point will not be semi-
quasihomogeneous with respect to an affine coordinate system in which
this axis is not a coordinate axis.

Thus, semi-quasihomogeneity of a singularity is closely connected
with the coordinate system. When we speak of a semi-quasihomogeneous
singularity, we usually mean that it is semi-quasihomogeneous in a suit-
able coordinate system. If we want to emphasize that the definition
of semi-quasihomogeneity is realized with respect to a given affine co-
ordinate system, or with respect to one of the three affine coordinate
systems which are canonically associated with a given projective coordi-
nate system, then we say that the singularity is semi-quasihomogeneous
with respect to the given coordinate system.

Another, perhaps even more fundamental difference between nonde-
generacy and semi-quasihomogeneity is that, even when semi-quasihomogeneity
is understood in the broader sense, i.e., relative to any affine coor-
dinate system, the property is generally not preserved under local
diffeomorphisms. For example, the curve x5 − y2 = 0 has a semi-
quasihomogeneous singularity at the origin; however, its image under
the diffeomorphism (x, y) 7→ (x, y − x2), i.e., the curve x5 − x4 −
2x2y − y2 = 0, has a singularity at the origin which is not semi-
quasihomogeneous relative to any affine coordinate system.

But for our purposes what is important is that many of the fea-
tures of nondegenerate r-fold singular points are also characteristic of
semi-quasihomogeneous singularities. Theorem 6.5.A generalizes to the
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semi-quasihomogeneous case as follows. In a suitable neighborhood of
a semi-quasihomogeneous singular point the curve looks like a union of
a number of quasilines. The words “looks like” here mean that there
exists a homeomorphism of the neighborhood which takes the curve to
a union of quasilines. The union of quasilines is the curve defined by
the truncation of the equation of the original curve to the side of the
Newton polygon facing the origin. All of this is proved in the same
way as Theorem 6.5.A.

6.8. Examples of Semi-Quasihomogeneous Singularities. The
simplest singularities are semi-quasihomogeneous (or, more precisely,
they become semi-quasihomogeneous after a suitable change of local
coordinates). The hierarchy of singularities starts with the zero-modal
singularities (which are called also simple singularities). They corre-
spond to the well-known root systems Ak, Dk, E6, E7, E8. All of these
singularities can be taken to semi-quasihomogeneous form by local dif-
feomorphisms.
Ak singularities (with k ≥ 1). Here one distinguishes between the

cases of odd and even k. If k is odd, then there are two nonsingular
branches tangent to one another with multiplicity k−1 (i. e., with local
intersection index equal to k) passing through a point of type Ak. Here
either both of the branches are real (with normal form xk+1 − y2 = 0),
or else they are conjugate imaginary (with normal form xk+1 +y2 = 0).
If k is even, then there is one branch and it has a cusp. If k = 2, it is
an ordinary cusp, but when k > 2 this is a “sharp” cusp. The normal
form is xk+1 − y2 = 0.
Dk singularities (k ≥ 4). Topologically, a Dk singularity looks like

an Ak−3 singularity through which one more nonsingular branch of the
curve passes, situated in general position with respect to the other
branches. In particular, a D4 singularity is a nondegenerate triple
point.
E6, E7, E8 singularities. The normal forms are: for E6, x

4 − y3 = 0;
for E7, (x3 − y2)y = 0; for E8, x

5 − y3 = 0.
But we shall need more complicated singularities. The first is the

type of singularity which Arnold [AVGZ-82] denoted by the symbol
J10. In a neighborhood of such a point the curve has three nonsingular
branches which have second order tangency to one another at the point.
This is a semi-quasihomogeneous singularity of weight (2, 1) and degree
6. J10 singularities are useful in constructing real curves, because curves
with a J10 singularity can be built up easily using obvious modifications
of classical methods of construction, while at the same time they are
complicated enough so that interesting new curves appear when one
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perturbs curves with J10 singularities. From this point of view one has
good singularities of type N16 (nondegenerate 5-fold points), X21 (a
point where four nonsingular branches have a second order tangency—
this is a semi-quasihomogeneous singularity of weight 2, 1 and degree
8), Z15 (a point where three nonsingular branches have second order
tangency and a fourth nonsingular branch intersects the other three
transversally—this is a semi-quasihomogeneous singularity of weight
1,2 and degree 7). (The symbols N16, X21 and Z15 are also Arnold’s
notation in [AVGZ-82].)

6.9. Evolving of Semi-Quasihomogeneous Singularities. Let the
equation a(x0, x1, x2) = 0 define a real projective curve of degree m
with no singular points except for the point (1 : 0 : 0), and suppose that
this point is a semi-quasihomogeneous singular point of weight u, v and
degree r. Further, suppose that the curve is situated (relative to the
canonical coordinate system) in such a way that the Newton polygon
∆(a) has side Γ facing the origin which lies on the line ui+vj = r, and
the curve aΓ(1, x, y) = 0 has no multiple components. Let g(x, y) = 0
be a curve having no singularities in R2. Suppose that ∆(g) is contained
between the origin and the line ui + vj = r, and the truncation gΓ

coincides with the Γ-truncation of the polynomial f(x, y) = a(1, x, y).
We set

ht(x, y) = f(x, y) + trg(t−ux, t−vy) − fΓ(x, y),

ct(x0, x1, x2) = a(x0, x1, x2) + trxm
0 g(x1x

−1
0 t−1, x2x

−1
0 t−1) − aΓ(x0, x1, x2).

It is clear that ct(1, x, y) = ht(x, y) and c0(x0, x1, x2) = a(x0, x1, x2).

6.9.A. There exist neighborhoods U ⊃ V of the point (1 : 0 : 0) in
RP 2 such that for t > 0 sufficiently small the curve ct(x0, x1, x2) = 0
is approximated by the curve a(x0, x1, x2) = 0 outside V , and it is
approximated inside U by the image of the curve g(x, y) = 0 under the
composition of quasihomothety (x, y) 7→ (tux, tvy) and the canonical
imbedding R2 → RP 2 : (x, y) 7→ (1 : x : y).

This theorem generalizes Theorem 6.6.A, and its proof, which is a
direct generalization of the proof of Theorem 6.6.A, will be left as an
exercise for the reader.

The evolvings of a semi-quasihomogeneous singular point which are
obtained by means of the construction in this subsection will be called
quasihomogeneous evolvings.

6.10. Perturbation of Curves with Several Singular Points.
In Theorems 6.5.A and 6.9.A the curves being perturbed have only
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one singular point, namely, the singular point which is dissipated and
for which the variation of topology in a neighborhood is described
in the theorems. If we suppose in Theorem 6.6.A that the curve
a(x0, x1, x2) = 0 has other singular points as well, then those singu-
larities will generally also dissipate in the family ct(x0, x1, x2) = 0, and
some additional information about the polynomial g is needed in order
to describe the topology of that evolving.

However, there is an important special case when, independently of
g, the singular points of the curve a(x0, x1, x2) = 0 other than (1 : 0 : 0)
are preserved under the evolving described above. This is the case when
these singular points are (0 : 1 : 0) or (0 : 0 : 1) or both (0 : 1 : 0)
and (0 : 0 : 1), and they are semi-quasihomogeneous relative to this
projective coordinate system.

In fact, the Newton polygons of the polynomials a = c0 and ct for
t > 0 on the side of the points (m, 0) and (0, m) coincide, as do the
monomials corresponding to points on these parts of the boundary of
the Newton polygons.

Thus, the evolvings described in the previous subsection (i.e., quasi-
homogeneous ones) can be carried out at two or three semi-quasihomogeneous
singular points independently, if the singularities are all semi-quasihomogeneous
relative to the same projective coordinate system.

6.11. Highdimensional Generalizations. The definitions in Section
6.7 of a quasihomothety, a quasihomogeneous polynomial, a quasililne,
and a semi-quasihomogeneous singularity generalize in the obvious way
to the case of a space of arbitrary dimension. So do the method of dis-
sipating semi-quasihomogeneous singularities in Section 6.9, Theorem
6.9.A and the remarks in Section 6.10. The exact statements are left
as an exercise.
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7. Evolving Concrete Singularities of Curves

This section is devoted to a discussion of evolvings of concrete sin-
gularities on plane curves. The topological classification of evolvings
has been completed only for certain very simple types of singularities.
We begin with simple singularities whose evolvings are completely un-
derstood; but such information is of little interest for constructions.
We then examine two types of unimodal singularities: J10 (three non-
singular branches which are second order tangent to each other at a
point) and X9 (nondegenerate 4-fold singularities). As in the case of
simple singularities, evolvings of X9 give almost nothing of use for con-
structions of curves. On the other hand, J10 —or more precisely, its
real form with three real branches—is very useful, and we shall give
a detailed discussion of the structure of its evolvings for all possible
topological types. We then examine evolvings of nondegenerate 5-fold
points and more complicated singularities.

Results on the topology of evolvings of some type of singularity can
be divided into three categories. The first consists of prohibitions on
the topology of the evolving. They are similar to the prohibitions on the
topology of nonsingular curves, and I shall limit myself to the statement
of results for concrete singularities. The second category of results
relates to the construction of concrete evolvings. In the case of semi-
quasihomogeneous singularities, Theorem 6.9.A reduces the problem of
constructing evolvings to the problem of constructing curves. We shall
sometimes include proofs of results of this second type; however, as a
rule the purpose of the proofs is merely to provide an illustration of
new methods and give an idea of how the proofs go. Finally, the third
category of results concern how the topology of the evolvings of some
family of singularities depends on the parameters which determine a
singularity in the family. For example, we consider all nondegenerate
r-fold singular points at which all of the branches are real, and we prove
that for fixed r the supply of evolvings of a given singularity does not
depend on the location of the branches (i.e., the angles between them,
their curvature, etc.). In all cases except for the important and first
nontrivial case of J−

10, I will limit myself to stating the results.

7.1. Zero-Modal Singularities. Singularities of the Ak series with
k odd and with two real branches (A−

k ). Any such singularity can be
taken by a local diffeomorphism to the normal form y2 − xk+1 = 0.
Any evolving of this singularity is topologically equivalent to one of
the evolvings in Figure 38. In this diagram and the ones that follow,
the symbol 〈α〉 replaces a group of α ovals lying outside one another.
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h�i
0 � � � (k � 1)=2

Figure 38. Evolvings of A−
k with odd k.

The evolvings in Figure 38 are constructed as follows: the evolving
on the right is given by the formula y2 − xk+1 − t = 0 with t > 0;
the evolvings shown beneath the original singularity are given by the
formulas y2 − (x − tx1)(x − tx2) · · · (x − tx2a+2)(x

2 + t2)(k−1)/2−a = 0,
where x1, . . . , x2a+2 are distinct real numbers (and, as usual, t is a
parameter which in a given evolving varies over an interval of the form
[0, t0]).

Singularities of the Ak series with k odd and with conjugate imag-
inary branches (A+

k ). Any such singularity can be taken by a local
diffeomorphism to the normal form y2 +xk+1 = 0. Any evolving of this
singularity is topologically equivalent to one of the evolvings in Figure
39. These evolvings are given by the formula y2 + (x − tx1) · · · (x −
tx2a)(x

2 + t2)(k+1)/2−a = 0, where x1, . . . , x2a are distinct real numbers.

<  >a

0<a<(k+1)/2=  =

Figure 39. Evolvings od A+
k with odd k.

Note that the singularities whose evolvings we have just described in-
clude singularities of type A1, i.e., nondegenerate double points (cross-
ings A−

1 and isolated double points A+
1 ). We considered the evolvings

of such singularities in Section 1.
Singularities of the Ak series with k even. Any such singularity can

be taken by a local diffeomorphism to the normal form y2 − xk+1 =
0. Any evolving of such a singularity is topologically equivalent to
one of the evolvings in Figure 40. They are given by the formula
y2 − (x− tx1) · · · (x− tx2a+1)(x

2 + t2)k/2−a = 0, where x1, . . . , x2a+1 are
distinct real numbers.

In particular, when k = 2 we obtain two types of evolvings of an
ordinary cusp.
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<  >a

0<a<k/2=  =

Figure 40. Evolvings od A+
k with even k.

7.1.A. Remark. If we make a suitable choice of xi, we can arrange it
so that the curves defined by the polynomials constructed above are
situated relative to the y-axis in any of the ways shown in Figures 41,
42 and 43. This can be interpreted as constructing all possible (up to
topological equivalence) evolvings of the boundary singularities of the
Bk+1 series (see Section 17.4 of [AVGZ-82] concerning boundary singu-
larities). By a evolving of a boundary singularity we mean a evolving
of the singularity with boundary neglected, in the course of which the
hypersurface being perturbed (in our case a curve) is transversal to the
boundary (i.e., to a fixed hyperplane, in our case the line x = 0).

h�i h�i
0 � � � (k � 1)=2 0 � �+ � � (k � 3)=2

h�i
0 � � � (k � 1)=2

h�i

h�i

h�i
0 � �+ � � (k � 3)=2

Figure 41. Evolvings of boundary singularity B−
k+1

with odd k.

Singularities of the Dk series with even k ≥ 4 and with three real
branches (D−

k ). Such a singularity can be taken by a local diffeomor-
phism to the normal form xy2−xk−1 = 0. Any evolving is topologically
equivalent to one of those in Figure 44.

In particular, when k = 4 (i.e, when D4 is a nondegenerate triple
point) one has seven evolvings (Figure 45). To construct the evolvings
in Figure 44 we note that, since a type D−

k germ can be obtained from
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Figure 42. Evolvings of boundary singularity B+

k+1

with odd k.

h�i0 � � � k=20 � �+ � � k=2� 1 h�i0 � �+ � � k=2h�ih�i h�i
Figure 43. Evolvings of boundary singularity Bk+1

with even k.

0 � � � (k � 1)=2h�i0 � � � (k � 1)=2
0 � �+ � � (k � 4)=2

h�i
h�i h�i

Figure 44. Evolvings of Dk with even k ≥ 4 and three
real branches (i.e., D−

k ).
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Figure 45. Evolvings of D−
4 .

a type A−
k−3 germ by adding a line in general position, it follows that

a evolving of a type D−
k germ can be obtained from a evolving of the

germ of a B−
k−2 boundary singularity by adding a boundary line and

then making a perturbation. In this way one can obtain all of the
evolvings in Figure 44 from the evolvings in Figure 41.

Singularities of the Dk series with even k ≥ 4 and one real branch
(D+

k ). Such a singularity can be taken by a local diffeomorphism to the
normal form xy2 + xk−1 = 0. Any evolving is topologically equivalent
to one of those in Figure 46. These evolvings can also be constructed
from those in Figure 42. h�i h�i0 � �+ � � k=2� 1

Figure 46. Evolvings of Dk with even k ≥ 4 and one
real branch (D+

k ).

Singularities of the Dk series with odd k ≥ 5. Such a singularity can
be taken by a local diffeomorphism to the normal form xy2−xk−1 = 0.
Any evolving is topologically equivalent to one of those in Figure 47.
They can be constructed in the same way from the evolvings in Figure
43.
E6 singularities. Such a singularity can be taken by a local diffeo-

morphism to the normal form x4 − y3 = 0. We note that all germs of
an E6 singularity are semi-quasihomogeneous, so that by rotating the
coordinate axes we can make the Newton diagram into the segment
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0 � �+ � � (k � 3)=2h�i h�i h�i0 � � � (k � 1)=2
Figure 47. Evolvings of Dk with odd k ≥ 5.

joining the points (4,0) and (0,3). Any evolving is topologically equiv-
alent to one of the five evolvings in Figure 48. All of the evolvings in
Figure 48 can be obtained as quasihomogeneous evolvings. In this case
the curves needed to construct the quasihomogeneous evolvings are
nonsingular curves of degree 4 which are tangent to the line at infinity
at (0 : 0 : 1) with the greatest possible multiplicity (i.e., biquadratic
tangency). Such curves can be obtained, for example, by making small
perturbations of a curve which splits into four lines. The construction
is shown in Figure 49. The perturbation consists each time in adding
the product of four linear forms defining lines through (0 : 0 : 1) to the
equation of the union of four lines, one of which is the line x0 = 0.

Figure 48. Evolvings of E6.

E7 singularities. Such a singularity can be taken by a local diffeo-
morphism to the normal form y3 − x2y = 0. As in the case of E6, it
is alway semi-quasihomogeneous. Any evolving is topologically equiv-
alent to one of the ten evolvings in Figure 50. All of the evolvings in
Figure 50 can be obtained as quasihomogeneous evolvings. The curves
needed for the construction are nonsingular curves of degree 4 which
have third order tangency with the line x0 = 0 at the point (0 : 0 : 1).
For example, as in the E6 case they can be obtained by small perturba-
tions of a curve which splits into four lines. In Figure 51 we show the
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Figure 49. Constructing quartic curves for semi-
quasihomogeneous evolvings of E6.

construction of one such curve, which gives the evolvings at the top of
Figure 50.

Figure 50. Evolvings of E7.

E8 singularities. Such a singularity can be taken by a local dif-
feomorphism to the normal form x5 − y3 = 0. It is always semi-
quasihomogeneous. Any evolving is topologically equivalent to one of
those in Figure 52. All of the evolvings in Figure 52 can be obtained as
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Figure 51. Constructing a quartic curve for a maximal
semi-quasihomogeneous evolvings of E7.

Figure 52. Evolvings of E8.

quasihomogeneous evolvings. The curves needed for the construction
are curves of degree 5 with a singular singularity at (0 : 0 : 1) which is
of type A4 and is semi-quasihomogeneous relative to the canonical co-
ordinate system. One can obtain such curves, for example, from small
perturbations of curves which split into the line x0 = 0 and the degree
4 curves constructed in the evolvings of an E7-singularity. The pertur-
bation consists in adding to the equation of the curve that splits the
product of the equations of five lines distinct from x0 = 0 and passing
through (0 : 0 : 1).

7.2. Three Branches with Second Order Tangency (J10 Singu-
larities). The germ of a curve of type J10 consists of three nonsingular
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branches which have second order tangency with one another. Any
germ of this type is semi-quasihomogeneous.

Its Newton diagram lies on the segment Γ joining the points (6, 0)
and (0, 3) if the x-axis is tangent to all three branches at the origin.
From a real viewpoint there are two types of J10 singularities: J−

10

singularities, where all three branches are real, and J+
10 singularities,

where one branch is real and the other two are conjugate imaginary.
Let f(x, y) = 0 be the equation of a curve with J−

10 singularity at
the origin, and suppose that the x-axis is tangent at the origin to
the branches of the curve f(x, y) = 0 which pass through the origin.
Then fΓ(x, y) = β(y − α1x

2)(y − α2x
2)(y − α3x

2) for some real β 6= 0,
α1 > α2 > α3. The curves y = αix

2 approximate the curve f(x, y) = 0
near the origin. The numbers αi have the following geometric meaning:
2αi is the curvature of the i-th branch of the curve f(x, y) = 0 at (0, 0).
The diffeomorphism of the affine plane given by (x, y) 7→ (x, ky + lx2)
preserves the semi-quasihomogeneity of the germ of the f(x, y) curve
relative to the standard coordinate system, but it changes the curvature
of the branches, since it takes the curve y = αix

2 to y = (kαi + l)x2.
Thus, this transformation enables us to make the two curvatures equal
to 1 and 2. Moreover, it can be shown that any germ of type J−

10 is
diffeomorphic to the germ of a curve defined by the equation

(y − x2)(y − 2x2)(y − αx2) = 0

with α > 2. A germ of type J+
10 is diffeomorphic to the germ of a curve

defined by the equation

(y − x2)(y2 + αx4) = 0

with α > 0.
The next two theorems give a complete topological classification of

evolvings of singularities of type J−
10.

7.2.A. Any evolving of a germ of a curve which is of type J−
10 is topolog-

ically equivalent to one of the 31 quasihomogeneous evolvings in Figure
53.

7.2.B . Any type J−
10 germ has quasihomogeneous evolvings of all of the

31 topological types in Figure 53.

Theorem 7.2.A is essentially a theorem about prohibitions. We shall
not prove it here; however, we shall return to it when we take up the
construction of nonsingular curves of degree 6 (see Subsection ??). At
that point we will be able to derive the theorem from the topological
prohibitions on the topology of nonsingular curves.
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α = 4 0 3 0 2 1 0 1 0 0
β = 0 4 0 3 0 1 2 0 1 0

γ = 3 2 1 0 0
δ = 0 0 0 1 0

Figure 53. Evolvings of J−
10.

To prove Theorem 7.2.B we must construct curves g(x, y) = 0 with
Newton polygon contained in the triangle with vertices (0, 0), (6, 0)
and (0, 3), such that the truncation gΓ(x, y) is equal to (y − α1x

2)(y −
α2x

2)(y − α3x
2), where α1 > α2 > α3 are any real numbers prescribed

in advance, and such that the set of real points of the curve g(x, y) = 0
are situated in RP 2 in the way shown in Figure 53.

We can obtain the curve in the middle of Figure 53 that is beneath
the drawing of the singularity to be evolved, if we take the equation
(y − α1(x

2 + 1)) × (y − α2(x
2 + 1))(y − α3(x

2 + 1)) = 0 or a nearby
irreducible equation. The other curves are constructed by a method
which can be regarded as a version of Hilbert’s method in 1.10. We take
the union of the parabolas y = kx2 − 1 and y = lx2 with k > l > 0,
and we perturb it as shown in Figure 54. We then add one of the
original parabolas to the resulting curve and subject the union (which
is a curve of degree 6) to a small perturbation. It is easy to see that
the other 30 curves in Figure 53 can be obtained using different small
perturbations.

It remains to concern ourselves with gΓ. This requires us practically
to go through the above construction once again.

7.2.C (Lemma). For any four numbers α0 > α1 > α2 > α3 > 0 with
α0 + α3 = α1 + α2 and for each of the drawings (a)–(c) in Figure 54,
there exists a real polynomial h in two variables such that

(i) the Newton polygon ∆(h) is the triangle bounded by the coordinate
axes and the segment Γ joining the points (0, 2) and (4, 0);

(ii) hΓ(x, y) = (y − α1x
2)(y − α2x

2);
(iii) the curve h(x, y) = 0 is nonsingular, and it is situated relative

to the parabolas y = α0x
2 − 1 and y = α3x

2 in the manner shown in
Figure 54.
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(a) (b) (c)

Figure 54

Proof. Denote by p0 and p3 the polynomials y−α0x
2 +1 and y = α3x

2.
Clearly the parabolas p0(x, y) = 0 and p3

3(x, y) = 0 intersect at two real
points. We set li(x, y) = x−βi with i = 1, . . . , 4 and ht = p0p3+tl1l2l3l4.
It is clear that hΓ

t (x, y) = (y−α0x
2)(y−α3x

2)+tx4. On the other hand,
hΓ

t factors as hΓ
t (x, y) = (y − γ1x

2)(y − γ2x
2). Here γ1 + γ2 = α0 + α3

and γ1γ2 = α0α3+t. Since α0+α3 = α1+α2 and α0 > α1 > α2 > α3, it
follows that α1α2 > α3α0, and for t = α1α2 −α0α3 > 0 the polynomial
hΓ

t is equal to (y−α1x
2)(y−α2x

2). Thus, hα1α2−α0α3
satisfies conditions

(i) and (ii) independently on the choice of β1, . . . , β4.
We shall show that the choice of these numbers can be made in such

a way that the polynomial also satisfies (iii). If the lines li(x, y) = 0
are situated relative to the parabolas pj(x, y) = 0 as shown in Figure
55, then there exists ε > 0 such that for t ∈ (0, ε] the curve ht(x, y) = 0
consists of three components and is situated relative to the parabolas
pj(x, y) = 0 in the way shown in Figure 54. We show that by suitably
choosing the lines li(x, y) = 0 we can arrange it so that the role of ε
can be played by any number in the interval (0, (α2

0 + α2
3)/2), and in

particular by α1α2 − α0α3.

(a) (b) (c)

Figure 55

Since the Newton polygon ∆(ht) has only one interior point, the
genus of the curve defined by ht is at most 1 (see Section 6.1). Hence,
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as t increases from zero, the first modification of the curve ht(x, y) = 0
must either decrease the number of components, or else give a curve
which decomposes. The latter case cannot occur for t ∈ (0,+∞).
In fact, by considering the truncation hΓ

t we see that the curves into
which the curve ht(x, y) = 0 can decompose are either two conjugate
imaginary curves or else two parabolas. The first is impossible, since
for any t > 0 a line of the form x = γ with γ ∈ (β1, β2) intersects the
curve ht(x, y) = 0 at two real points; and the second case is impossible,
because the vertical line through a point of intersection of the parabolas
p0(x, y) = 0 and p3(x, y) = 0 does not intersect the curve ht(x, y) = 0
for t > 0. For t ∈ (0, (α2

0+α2
3)/2), the branches going out to infinity are

preserved. If we place the lines li(x, y) = 0 near the point of intersection
of the parabolas p0(x, y) = 0 and p3(x, y) = 0, we can arrange it so
that two branches of the curve ht(x, y) = 0 pass through a prescribed
neighborhood of this point for all t ∈ (0, (α2

0 + α2
3)/2), and hence the

oval is preserved and no modifications have occurred. �

End of the Proof of Theorem 7.2.B. As we said before, the equation

(y − α1(x
2 + 1))(y − α2(x

2 + 1))(y − α3(x
2 + 1)) = 0

(and nearby irreducible equations) give the curve that is shown in the
middle of Figure 53. The remaining curves in Figure 53 can be realized
using polynomials which are obtained by small perturbations of prod-
ucts of the form pjh, where pj and h are as in 7.2.C . The perturbations

involve adding polynomials of the form ε
∏5

i=1(x − γi). Under such a
perturbation there is no change in the terms corresponding to points
on the side of the Newton polygon joining (6, 0) and (0, 3).

However, in this way one does not obtain evolvings of all of the type
J−

10 germs. In the case when the polynomials p3h are perturbed, one
obtains evolvings of type J−

10 germs for which all branches are convex
in the same direction and have arbitrary curvature (of the same sign).
The point is that the type J−

10 germ given by a polynomial with Γ-
truncation (y− a1x

2)(y− a2x
2)(y− a3x

2), is a union of three branches
with curvature 2ai. On the other hand, in 7.2.C the numbers α1, α2, α3

are subject only to the condition α1 > α2 > α3 > 0. In the case when
the polynomials p0h are perturbed, one obtains evolvings only of type
J−

10 germs for which all branches are convex in the same direction and,
moreover, the curvature satisfies the conditions κ0 > κ1 > κ2 > 0 and
κ1 + κ2 − κ0 > 0, since the numbers α0, α1, α2 in 4.2.C must satisfy
the inequalities α0 > α1 > α2 > 0 and α1 + α2 − α0 = α3 > 0. In the
case of type J−

10 germ with arbitrary curvature values κ0 > κ1 > κ2,
we choose δ so that the numbers ki = κi + δ satisfy the inequalities
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k2 > 0 and (to provide for all cases) k1 + k2 − k0 > 0; we then use the
above construction to obtain a polynomial which gives the required
evolving of a germ with curvature k0, k1, k2; and, finally, we apply the
transformation (x, y) 7→ (x, y + δ/2x2) to this polynomial. It is easy
to see that this transformation leaves the Newton polygon inside the
triangle with vertices (0, 0), (6, 0) and (0, 3), and it does not affect the
topological type of the evolving. �

The next two theorems 7.2.D and 7.2.E give a complete topological
classification of evolvings of type J+

10 singularities. These theorems are
analogous to Theorems 7.2.A and 7.2.B .

7.2.D . Any evolving of a type J+
10 germ of a curve is topologically equiv-

alent to one of the ten quasihomogeneous evolvings in Figure 56.

7.2.E . Any type J+
10 germ has quasihomogeneous evolvings of all of the

ten types in Figure 56.

Figure 56. Evolvings of J+
10

The next Lemma is similar to Lemma 7.2.C and it has a similar
proof.

7.2.F (Lemma). For any three numbers α1 > α2 > 0, β > 0 with β >
(α1 + α2)

2/4 and for each of the drawings (a)–(b) in Figure 57, there
exists a real completely nondegenerate polynomial h in two variables
such that

(i) the Newton polygon ∆(h) is the triangle bounded by the coordinate
axes and the segment Γ joining the points (0, 2) and (4, 0);
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(ii) hΓ(x, y) = y2 − (α1 + α2)yx
2 + βx4;

(iii) the curve h(x, y) = 0 is nonsingular, and it is situated relative
to the parabolas y = α0x

2 − 1 and y = α3x
2 in the manner shown in

Figure 57.

(a) (b)

Figure 57

Theorem 7.2.E is deduced from Lemma 7.2.F sismilarly as Theorem
7.2.B has been deduced above from Lemma 7.2.C .

7.3. Evolvings of Nondegenerate r-Fold Points. Recall that a
nondegenerate r-fold point of a plane curve is a point where the curve
has r nonsingular branches which intersect transversally. Any germ of
this type is semi-quasihomogeneous relative to any coordinate system
with origin at the r-fold point. In the cases r = 2 and 3, we obtain
the singularities of type A1 and D4 considered above. Nondegenerate
4-fold singularities are denoted by the symbol X9, and 5-fold points are
denoted N16.

As we showed in Subsection 6.6, evolvings of nondegenerate r-fold
singularities are closely connected with nonsingular affine real plane
algebraic curves of degree r whose projectivization is nonsingular and
transverse to the line at infinity. In particular, any such curve gives a
quasihomogeneous evolving of germs of this type. Here the evolvings of
a given germ are obtained from affine curves whose asymptotes point
in the directions of the tangent lines to the branches of the germ—
this is the obvious geometrical meaning of the requirement that the
coefficients corresponding to points of the Newton diagram coincide.

There are three types of real nondegenerate 4-fold points: type X2
9

singularities, where all four branches are real, or X1
9 where there is a

pair of conjugate imaginary branches; and type X0
9 singularities, where

all four branches are imaginary.
The next two theorems give a complete topological classification of

evolvings of X9 singularities.
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7.3.A. Any evolving of a type X9 germ of a plane curve is topologically
equivalent to one of the quasihomogeneous evolvings in Figure 58.

7.3.B . Any type X9 germ of a plane curve has quasihomogeneous evolv-
ings of all of the topological types in the corresponding part of Figure 58
(with the appropriate number of real branches), and it also has quasiho-
mogeneous evolvings of all of the topological types obtained by rotating
the ones in Figure 58 in the plane by multiples of π/4.

X 2

9

X 1

9

h�i0 � � � 2 h�i0 � � � 3
h�i0 � � � 40 � � � 3h�i X 0

9

Figure 58. Evolvings of X9

Theorems 7.3.A and 7.3.B can easily be obtained from the results
we have about the topology of curves of degree 4. As in the case of
zero-modal singularities, singularities of type X9 are too simple for
their evolvings to be applied directly to give something beyond what
the classical methods give in constructing nonsingular projective plane
curves. Thus, Theorems 7.3.A and 7.3.B will not be used later, and
were only given for the sake of completeness.

But evolvings of nondegenerate 5-fold singularities are of interest
from our point of view. There are also three real forms of these singu-
larities: with 1, 3 and 5 real branches, denoted by N0

16, N
1
16 and N2

16,
respectively . We will use only singularities with 5 real branches

The corresponding classification problems for affine real plane curves
of degree 5 have been completely solved. Namely, Polotovsky [?], [?]
gave a classification up to isotopy for the curves of degree 6 that split
into a union of two nonsingular curves of degree 5 and 1 transversal to
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each other (and hence for the nonsingular affine curves of degree 5 hav-
ing 5 (real or imaginary) asymptotes pointing in different directions),
and Shustin [?] proved that for any fixed isotopy type of such a split
degree 6 curve, all positions of the intersection points on the line are
realized (i.e., for a given isotopy type of degree 5 affine curve as above,
all sets of directions of the asymptotes are realized). These two results,
together with the known prohibitions on nonsingular curves, leads to a
complete topological classification of the evolvings of nondegenerate 5-
fold points; we shall state the result only for the case of 5 real branches,
see Theorems 7.3.C and 7.3.D below.

7.3.C . Any evolving of a type N2
16 germ of a plane curve is topologically

equivalent to one of the quasihomogeneous evolvings in Figure 59.

7.3.D . Any type N2
16 germ of a plane curve has quasihomogeneous

evolvings of all of the topological types in the corresponding part of
Figure 59, and it also has quasihomogeneous evolvings of all of the
topological types which are obtained from these as a result of rotating
the plane by multiples of 2π/5.

A reasonably complete proof of Theorem 7.3.D would take up a lot
of space. I shall thus limit myself to a small part: the construction of
two affine curves of degree 5 which give two of the four quasihomoge-
neous evolvings enabling us to construct M-curves. All four of these
evolvings are shown in Figure 60. What we construct below are the
curves which give the evolvings on the right in Figure 60. I shall give
two constructions. One gives a evolving with α = 0, β = 6 and is
carried out by Hilbert’s method; the other gives both of the evolvings
and is obtained by a new method. The first construction is in some
sense contained in the second, and is being considered here mainly for
the purpose of illustrating the difference between the methods. It is
shown in Figure 61.

For the second construction we take a union of two real conics C1

and C2 tangent to one another at two real points and a line L tangent
to C1 and C2 at one of these two points (Figure 62). We place this
union of curves on the plane in such a way that the two common tan-
gent lines are the coordinate axes x0 = 0 and x2 = 0, and the points of
intersection of the conics are (1 : 0 : 0) and (0 : 0 : 1). We then obtain
a curve of degree 5 with two singular points of type A−

3 and J−
10 which

are semi-quasihomogeneous relative to the coordinate system. Their
quasihomogeneous evolvings give nonsingular projective curves which
can be transformed into the required curves by a projective transfor-
mation taking the line M to the line at infinity x0 = 0 (Figure 61).
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Figure 59. Evolvings of N2
16.
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The topological classification problem for evolvings of nondegenerate
r-fold singular points on plane curves has not been solved for any r ≥ 6.
Some results for r = 6 were obtained by Chislenko [?] and Korchagin
and Shustin [?]. The topological classification problem for evolvings
is immense when r is large. However, there are partial results which
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Figure 63

are within reach and also worthwhile. For example, in Subsection ??
below we shall need the evolvings given in the following theorem.

7.3.E . For any odd r, there is a quasihomogeneous evolving of the form
in Figure 63 for any germ of a nondegenerate r-fold singularity on a
plane curve at which all branches are real.

The affine curves of degree r which are needed to prove this theorem
can be constructed by Harnack’s method (see Subsection 1.6). The
projective curve of odd degree r with scheme 〈J ∐ (r − 1)(r − 2)/2〉
that can be obtained by Harnack’s method is subjected to a projective
transformation which takes a generating line to the line at infinity.

7.4. Three Crossed-Out Doubly Tangent Branches (Z15 Singu-
larities). In this subsection we examine evolvings of a singular point
through which four nonsingular branches pass, of which three have a
second order tangency at the point, while the fourth intersects the
other three transversally. There are two real forms for such singular-
ities: Z−

15, with four real branches, and Z+
15, with two real and two

conjugate imaginary branches (clearly, the imaginary branches must
be tangent to one another).
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A type Z15 singularity is semi-quasihomogeneous relative to any co-
ordinate system in which one axis is tangent at the singularity to the
branches that are tangent to one another. If this axis is the x-axis and
the singularity is of type Z−

15, then the truncation to the line segment
from (7, 0) to (1, 3) of the polynomial which in this situation gives the
curve has the form βx(y−α1x

2)(y−α2x
2)(y− α3x

2), where α1, α2, α3

are distinct real numbers, which can be interpreted as half of the cur-
vature of the branches tangent to the x-axis.

Although the complete topological classification of evolvings of points
of type Z15 is not known, much in this direction has already been done.
All of the results I am aware of were obtained by Korchagin [?]. It seems
that there is in principle no obstacle to completing the topological clas-
sification of evolvings of this type of singularity. Most likely, it remains
only to prove a few prohibitions and prove in the Z−

15 case that any
evolving is topologically equivalent to a quasihomogeneous evolving.
Here we shall limit ourselves to the statement of a result relating to
Z−

15.

7.4.A. Any germ of type Z−
15 has the quasihomogeneous evolvings shown

in Figure 64, and also has the quasihomogeneous evolvings which are
symmetrical to them relative to the vertical axis.

A proof of this theorem is contained in Korchagin’s article [?], except
for one thing: in the case of the evolving in Figure 65, Korchagin does
not prove that it can be applied to a germ with arbitrary curvature of
the branches. However, Korchagin’s construction enables one to do this
without difficulty. In Figure 66 we show a construction of the curves
which are needed to obtain some of the evolvings in Figure 64. The
construction is carried out by a slight modification of Hilbert’s method,
followed by evolving of a type J−

10 point.
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transl., Birkhaüser, Basel, 1985.

[Bre-72] G. Bredon, Introduction into compact transformation groups, Academic
Press, New York, London, 1972.

[Bru-56] L. Brusotti, Su talune questioni di realita nei loro metodi, resultati e
pro le me, Collogue sur les Questions de Réalite en Geometrie., Georges
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[Wim-23] A. Wiman, Über die reellen Züge der ebenen algebraischen Kurven,
Math. Ann. 90 (1923), 222–228.


