Real algebraic curves in real minimal del Pezzo surfaces

Ph.D. Defense

Matilde Manzaroli

École Polytechnique

28/06/2019

Complex compact algebraic variety X

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

Study of the topology of real algebraic varieties

• Systematic approach Harnack, Klein, Hilbert

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

- Systematic approach Harnack, Klein, Hilbert
- 16th Hilbert's problem: classification of isotopy types

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

- Systematic approach Harnack, Klein, Hilbert
- 16th Hilbert's problem: classification of isotopy types
 - real algebraic curves of degree 6 in $\mathbb{R}P^2$ (Gudkov '69)

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

- Systematic approach Harnack, Klein, Hilbert
- 16th Hilbert's problem: classification of isotopy types
 - real algebraic curves of degree 6 in $\mathbb{R}P^2$ (Gudkov '69)
 - 2 real algebraic surfaces of degree 4 in $\mathbb{R}P^3$ (Kharlamov '77)

- Complex compact algebraic variety X
- Real structure $\sigma: X \to X$
- Real part $\mathbb{R}X = \text{fix}(\sigma)$

- Systematic approach Harnack, Klein, Hilbert
- 16th Hilbert's problem: classification of isotopy types
 - real algebraic curves of degree 6 in RP² (Gudkov '69) → up to degree 7 (Viro '84)
 - 2 real algebraic surfaces of degree 4 in $\mathbb{R}P^3$ (Kharlamov '77)

Real plane curves

• $(\mathbb{C}P^2, conj), conj([x : y : z]) = [\overline{x} : \overline{y} : \overline{z}]$

Real plane curves

- $(\mathbb{C}P^2, conj), conj([x : y : z]) = [\overline{x} : \overline{y} : \overline{z}]$
- $A \subset \mathbb{C}P^2$ real algebraic curve of degree d

Real plane curves

- $(\mathbb{C}P^2, conj), conj([x : y : z]) = [\overline{x} : \overline{y} : \overline{z}]$
- $A \subset \mathbb{C}P^2$ real algebraic curve of degree d
- $\bullet \mathbb{R}A \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow \mathbb{R}P^{2}$

Real plane curves

- $(\mathbb{C}P^2, conj), conj([x : y : z]) = [\overline{x} : \overline{y} : \overline{z}]$
- $A \subset \mathbb{C}P^2$ real algebraic curve of degree d
- $\bullet \ \mathbb{R} A \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow \mathbb{R} P^{2}$
- ovals, pseudo-lines

Real plane curves

- $(\mathbb{C}P^2, conj), conj([x : y : z]) = [\overline{x} : \overline{y} : \overline{z}]$
- $A \subset \mathbb{C}P^2$ real algebraic curve of degree d
- $\mathbb{R}A \cong \sqcup_{i=1}^{l} S^1 \hookrightarrow \mathbb{R}P^2$
- ovals, pseudo-lines

Example real scheme: $\mathcal{J} \sqcup \langle 1 \rangle \sqcup \langle \langle 2 \rangle \rangle$

Definition

A has real scheme S if the pair $(\mathbb{R}P^2, \mathbb{R}A)$, up to homeomorphism, realizes S

Definition

A has real scheme S if the pair $(\mathbb{R}P^2, \mathbb{R}A)$, up to homeomorphism, realizes S

Classification

Fix $d \in \mathbb{Z}_{>0}$, classify real schemes realized by $(\mathbb{R}P^2, \mathbb{R}A)$, where $A \subset \mathbb{C}P^2$ real algebraic curve of degree d

Definition

A has real scheme S if the pair $(\mathbb{R}P^2, \mathbb{R}A)$, up to homeomorphism, realizes S

Classification

Fix $d \in \mathbb{Z}_{>0}$, classify real schemes realized by $(\mathbb{R}P^2, \mathbb{R}A)$, where $A \subset \mathbb{C}P^2$ real algebraic curve of degree d

Restrictions on topology of real curves

Definition

A has real scheme S if the pair $(\mathbb{R}P^2, \mathbb{R}A)$, up to homeomorphism, realizes S

Classification

Fix $d \in \mathbb{Z}_{>0}$, classify real schemes realized by $(\mathbb{R}P^2, \mathbb{R}A)$, where $A \subset \mathbb{C}P^2$ real algebraic curve of degree d

- Restrictions on topology of real curves
- Constructions real algebraic curves with prescribed topology

Harnack-Klein inequality

 (A, σ_A) real compact curve

I = number of connected components of $\mathbb{R}A$

$$I \leq g(A) + 1$$

Harnack-Klein inequality

 (A, σ_A) real compact curve

I = number of connected components of $\mathbb{R}A$

$$I \leq g(A) + 1$$

If
$$I = g(A) + 1$$
, A maximal

Harnack-Klein inequality

 (A, σ_A) real compact curve

 $\emph{I}=$ number of connected components of $\mathbb{R}\emph{A}$

$$I \leq g(A) + 1$$

If I = g(A) + 1, A maximal

Degree *d* real plane curves

$$I \leq \frac{(d-1)(d-2)}{2} + 1$$

Harnack-Klein inequality

 (A, σ_A) real compact curve

I = number of connected components of $\mathbb{R}A$

$$I \leq g(A) + 1$$

If I = g(A) + 1, A maximal

Degree d real plane curves

$$1 \le \frac{(d-1)(d-2)}{2} + 1$$

Harnack-Klein inequality

 (A, σ_A) real compact curve

I = number of connected components of $\mathbb{R}A$

$$I \leq g(A) + 1$$

If I = g(A) + 1, A maximal

Degree d real plane curves

$$1 \le \frac{(d-1)(d-2)}{2} + 1$$

Harnack-Klein inequality

 (A, σ_A) real compact curve

I = number of connected components of $\mathbb{R}A$

$$I \leq g(A) + 1$$

If I = g(A) + 1, A maximal

Degree d real plane curves

$$1 \leq \frac{(d-1)(d-2)}{2} + 1$$

Harnack-Klein inequality

 (A, σ_A) real compact curve

I = number of connected components of $\mathbb{R}A$

$$I \leq g(A) + 1$$

If I = g(A) + 1, A maximal

Degree d real plane curves

$$1 \leq \frac{(d-1)(d-2)}{2} + 1$$

• Great development on restrictions! (Arnold, Rokhlin,...)

- Great development on restrictions! (Arnold, Rokhlin,...)
- Constructions: relatively elementary (Brusotti's theorem)

- Great development on restrictions! (Arnold, Rokhlin,...)
- Constructions: relatively elementary (Brusotti's theorem)

→ Breakthrough Viro's patchworking method ('70s)

- Great development on restrictions! (Arnold, Rokhlin,...)
- Constructions: relatively elementary (Brusotti's theorem)

- → Breakthrough Viro's patchworking method ('70s)
- Construction real algebraic non-singular hypersurfaces with prescribed topology in real toric varieties

- Great development on restrictions! (Arnold, Rokhlin,...)
- Constructions: relatively elementary (Brusotti's theorem)

- → Breakthrough Viro's patchworking method ('70s)
- Construction real algebraic non-singular hypersurfaces with prescribed topology in real toric varieties
- Up to now, patchworking and its generalizations are some of the most powerful construction methods

Constructions in general

How construct real algebraic curves in

- real non-toric surfaces or
- in toric surfaces with real structure non-compatible with torus action?

Quadric ellipsoid

Real algebraic curves on quadric ellipsoid

 $\bullet \ (\mathbb{C}P^1 \times \mathbb{C}P^1, \sigma), \, \sigma(\omega, \eta) = (\overline{\eta}, \overline{\omega})$

Quadric ellipsoid

Real algebraic curves on quadric ellipsoid

- $(\mathbb{C}P^1 \times \mathbb{C}P^1, \sigma), \, \sigma(\omega, \eta) = (\overline{\eta}, \overline{\omega})$
- $\mathbb{R}(\mathbb{C}P^1 \times \mathbb{C}P^1) \cong S^2$

Real algebraic curves on quadric ellipsoid

- $(\mathbb{C}P^1 \times \mathbb{C}P^1, \sigma), \, \sigma(\omega, \eta) = (\overline{\eta}, \overline{\omega})$
- $\mathbb{R}(\mathbb{C}P^1 \times \mathbb{C}P^1) \cong S^2$
- $A \subset \mathbb{C}P^1 \times \mathbb{C}P^1$ real algebraic curve of bidegree (d, d)

Real algebraic curves on quadric ellipsoid

- $(\mathbb{C}P^1 \times \mathbb{C}P^1, \sigma), \, \sigma(\omega, \eta) = (\overline{\eta}, \overline{\omega})$
- $\mathbb{R}(\mathbb{C}P^1 \times \mathbb{C}P^1) \cong S^2$
- $A \subset \mathbb{C}P^1 \times \mathbb{C}P^1$ real algebraic curve of bidegree (d, d)
- $\bullet \ \mathbb{R}A \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow S^{2}$

Real algebraic curves on quadric ellipsoid

- $(\mathbb{C}P^1 \times \mathbb{C}P^1, \sigma), \, \sigma(\omega, \eta) = (\overline{\eta}, \overline{\omega})$
- $\mathbb{R}(\mathbb{C}P^1 \times \mathbb{C}P^1) \cong S^2$
- $A \subset \mathbb{C}P^1 \times \mathbb{C}P^1$ real algebraic curve of bidegree (d, d)
- $\bullet \ \mathbb{R}A \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow S^{2}$
- ovals

Real algebraic curves on quadric ellipsoid

- $(\mathbb{C}P^1 \times \mathbb{C}P^1, \sigma), \, \sigma(\omega, \eta) = (\overline{\eta}, \overline{\omega})$
- $\mathbb{R}(\mathbb{C}P^1 \times \mathbb{C}P^1) \cong S^2$
- $A \subset \mathbb{C}P^1 \times \mathbb{C}P^1$ real algebraic curve of bidegree (d, d)
- $\bullet \ \mathbb{R} A \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow S^{2}$
- ovals

Example real scheme: $\alpha \sqcup \langle \beta \rangle \sqcup \langle \gamma \rangle$

Goal

Classify real schemes in bidegree (d, d) on the quadric ellipsoid

Goal

Classify real schemes in bidegree (d, d) on the quadric ellipsoid

Known results

 Restrictions on topology (Bézout-type, Harnack-Klein, Klein, Mikhalkin, Orevkov, Zvonilov)

Goal

Classify real schemes in bidegree (d, d) on the quadric ellipsoid

- Restrictions on topology (Bézout-type, Harnack-Klein, Klein, Mikhalkin, Orevkov, Zvonilov)
- Constructions (Degtyarev, Gudkov, Shustin, Zvonilov)

Goal

Classify real schemes in bidegree (d, d) on the quadric ellipsoid

- Restrictions on topology (Bézout-type, Harnack-Klein, Klein, Mikhalkin, Orevkov, Zvonilov)
- Constructions (Degtyarev, Gudkov, Shustin, Zvonilov)
- Complete classification up to d = 4 (Gudkov, Shustin)

Goal

Classify real schemes in bidegree (d, d) on the quadric ellipsoid

- Restrictions on topology (Bézout-type, Harnack-Klein, Klein, Mikhalkin, Orevkov, Zvonilov)
- Constructions (Degtyarev, Gudkov, Shustin, Zvonilov)
- Complete classification up to d = 4 (Gudkov, Shustin)
- Partial classification of maximal (i.e. 17 ovals) real schemes in d = 5, two missing (Mikhalkin)

Goal

Classify real schemes in bidegree (d, d) on the quadric ellipsoid

- Restrictions on topology (Bézout-type, Harnack-Klein, Klein, Mikhalkin, Orevkov, Zvonilov)
- Constructions (Degtyarev, Gudkov, Shustin, Zvonilov)
- Complete classification up to d = 4 (Gudkov, Shustin)
- Partial classification of maximal (i.e. 17 ovals) real schemes in d = 5, two missing (Mikhalkin)
- What about d = 5?

General definition (Klein)

 (A, σ_A) real compact curve. If $A \setminus \mathbb{R}A$ non-connected, we say A is separating; otherwise non-separating.

General definition (Klein)

 (A, σ_A) real compact curve. If $A \setminus \mathbb{R}A$ non-connected, we say A is separating; otherwise non-separating.

Mikhalkin's congruences

General definition (Klein)

 (A, σ_A) real compact curve. If $A \setminus \mathbb{R}A$ non-connected, we say A is separating; otherwise non-separating.

Mikhalkin's congruences

Theorem (M)

 \forall 0 \leq l \leq 17, every real scheme in bidegree (5,5) with l ovals, that is not previously prohibited, is realizable by a non-separating (and/or separating) real algebraic curve of bidegree (5,5) on the quadric ellipsoid.

General definition (Klein)

 (A, σ_A) real compact curve. If $A \setminus \mathbb{R}A$ non-connected, we say A is separating; otherwise non-separating.

Mikhalkin's congruences

Theorem (M)

 \forall 0 \leq l \leq 17, every real scheme in bidegree (5,5) with l ovals, that is not previously prohibited, is realizable by a non-separating (and/or separating) real algebraic curve of bidegree (5,5) on the quadric ellipsoid.

Construction

No patchworking method to construct

General definition (Klein)

 (A, σ_A) real compact curve. If $A \setminus \mathbb{R}A$ non-connected, we say A is separating; otherwise non-separating.

Mikhalkin's congruences

Theorem (M)

 \forall 0 \leq l \leq 17, every real scheme in bidegree (5,5) with l ovals, that is not previously prohibited, is realizable by a non-separating (and/or separating) real algebraic curve of bidegree (5,5) on the quadric ellipsoid.

Construction

- No patchworking method to construct
- Main strategy: reduce ourselves to construct real curves on Σ_2 degenerating the quadric ellipsoid to the quadratic cone in $\mathbb{C}P^3$

 $\mathbb{R}Q_{\varepsilon}$ $\mathbb{R}Q_{0}$ $\mathbb{R}\Sigma_{2}$ • Constructing real curves of bidegree (5,0) and with prescribed topology in $\Sigma_{2} \leadsto$ Constructing real curves of bidegree (5,5) and with prescribed topology in the quadric ellipsoid

- Constructing real curves of bidegree (5,0) and with prescribed topology in $\Sigma_2 \leadsto$ Constructing real curves of bidegree (5,5) and with prescribed topology in the quadric ellipsoid
- Constructing tools in Σ_2 :

- Constructing real curves of bidegree (5,0) and with prescribed topology in $\Sigma_2 \leadsto$ Constructing real curves of bidegree (5,5) and with prescribed topology in the quadric ellipsoid
- Constructing tools in Σ₂:
 - **1** Birational transformations $\Sigma_n - \rightarrow \Sigma_{n+1}$

- Constructing real curves of bidegree (5,0) and with prescribed topology in Σ₂ → Constructing real curves of bidegree (5,5) and with prescribed topology in the quadric ellipsoid
- Constructing tools in Σ₂:
 - **1** Birational transformations $\Sigma_n - \rightarrow \Sigma_{n+1}$
 - ② Orevkov's method via dessins d'enfant ((3,0) curves in Σ_n)

- Constructing real curves of bidegree (5,0) and with prescribed topology in Σ₂ → Constructing real curves of bidegree (5,5) and with prescribed topology in the quadric ellipsoid
- Constructing tools in Σ₂:
 - **1** Birational transformations $\Sigma_n - \rightarrow \Sigma_{n+1}$
 - ② Orevkov's method via dessins d'enfant ((3,0) curves in Σ_n)
 - Viro's patchworking method

• No direct use of Orevkov method to construct real curve of bidegree (3,4) in Σ_2

- No direct use of Orevkov method to construct real curve of bidegree (3, 4) in Σ₂
 - Construct bidegree (3,0) real curve with prescribed topology in Σ_6

- No direct use of Orevkov method to construct real curve of bidegree (3, 4) in Σ₂
 - Construct bidegree (3,0) real curve with prescribed topology in Σ_6
 - ② Orevkov's method: \exists real curve of bidegree (3,0) with prescribed topology in $\Sigma_6 \to$ combinatorial problem

- No direct use of Orevkov method to construct real curve of bidegree (3, 4) in Σ₂
 - Construct bidegree (3,0) real curve with prescribed topology in Σ_6
 - ② Orevkov's method: \exists real curve of bidegree (3,0) with prescribed topology in $\Sigma_6 \to$ combinatorial problem
 - **3** Birational transformations from Σ_6 to Σ_2

- No direct use of Orevkov method to construct real curve of bidegree (3, 4) in Σ₂
 - Construct bidegree (3,0) real curve with prescribed topology in Σ_6
 - Orevkov's method: \exists real curve of bidegree (3,0) with prescribed topology in $\Sigma_6 \to \text{combinatorial problem}$
 - **3** Birational transformations from Σ_6 to Σ_2
 - **4** Construct bidegree (3,4) real curve with prescribed topology in Σ_2

- No direct use of Orevkov method to construct real curve of bidegree (3, 4) in Σ₂
 - Construct bidegree (3,0) real curve with prescribed topology in Σ_6
 - ② Orevkov's method: \exists real curve of bidegree (3,0) with prescribed topology in $\Sigma_6 \to \text{combinatorial problem}$
 - **3** Birational transformations from Σ_6 to Σ_2
 - **4** Construct bidegree (3,4) real curve with prescribed topology in Σ_2
- Construct bidegree (2,0) real curve in Σ₂ controlling its intersection with a fixed bidegree (1,0) real curve

- No direct use of Orevkov method to construct real curve of bidegree (3, 4) in Σ₂
 - Construct bidegree (3,0) real curve with prescribed topology in Σ_6
 - Orevkov's method: \exists real curve of bidegree (3,0) with prescribed topology in $\Sigma_6 \to \text{combinatorial problem}$
 - **3** Birational transformations from Σ_6 to Σ_2
 - **4** Construct bidegree (3,4) real curve with prescribed topology in Σ_2
- Construct bidegree (2,0) real curve in Σ₂ controlling its intersection with a fixed bidegree (1,0) real curve
- Apply the patchworking technique

• Real minimal rational surfaces (Comesatti '13-'14)

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{i=1}^4 S^2$

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{j=1}^4 S^2$

Challenging aspects

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{j=1}^4 S^2$

Challenging aspects

Non-toric

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{i=1}^4 S^2$

Challenging aspects

- Non-toric
- Non-connected real part (Mikhalkin '98, real sextics on real cubic surfaces)

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{i=1}^4 S^2$

Challenging aspects

- Non-toric
- Non-connected real part (Mikhalkin '98, real sextics on real cubic surfaces)

Bright side

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{i=1}^4 S^2$

Challenging aspects

- Non-toric
- Non-connected real part (Mikhalkin '98, real sextics on real cubic surfaces)

Bright side

 Every real curve realizes in homology an integer multiple of the anti-canonical class

- Real minimal rational surfaces (Comesatti '13-'14)
 - Real minimal del Pezzo surfaces of degree 1 with $\mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
 - Real minimal del Pezzo surfaces of degree 2 with $\bigsqcup_{j=1}^4 S^2$

Challenging aspects

- Non-toric
- Non-connected real part (Mikhalkin '98, real sextics on real cubic surfaces)

Bright side

- Every real curve realizes in homology an integer multiple of the anti-canonical class
- Anti-(bi)canonical map exhibits such surfaces as ramified double covers

 (X, σ) real del Pezzo surface of degree 2 with $\mathbb{R}X \cong \bigsqcup_{i=1}^4 S^2$

 (X, σ) real del Pezzo surface of degree 2 with $\mathbb{R}X \cong \bigsqcup_{i=1}^4 S^2$

• $A \subset X$ a class d real algebraic non-singular curve

 (X, σ) real del Pezzo surface of degree 2 with $\mathbb{R}X \cong \bigsqcup_{i=1}^4 S^2$

- A ⊂ X a class d real algebraic non-singular curve
- $\bullet \ \mathbb{R}A \cong \sqcup_{j=1}^{I} S^{1} \hookrightarrow \bigsqcup_{j=1}^{4} S^{2}$

 (X, σ) real del Pezzo surface of degree 2 with $\mathbb{R}X \cong \bigsqcup_{i=1}^4 S^2$

- A ⊂ X a class d real algebraic non-singular curve
- $\bullet \ \mathbb{R} A \cong \sqcup_{i=1}^{l} S^{1} \hookrightarrow \bigsqcup_{i=1}^{4} S^{2}$
- ovals

Harnack-Klein inequality + Adjunction formula:

Harnack-Klein inequality + Adjunction formula:

Bound on number of ovals for a class d real curve

$$I \leq d(d-1)+2$$

Harnack-Klein inequality + Adjunction formula:

Bound on number of ovals for a class *d* real curve

$$l \leq d(d-1)+2$$

Proposition (M)

Every real scheme in class d = 1, 2, non-prohibited by Harnack-Klein, is realizable by a real curve of class d in X

Harnack-Klein inequality + Adjunction formula:

Bound on number of ovals for a class *d* real curve

$$l \leq d(d-1)+2$$

Proposition (M)

Every real scheme in class d = 1, 2, non-prohibited by Harnack-Klein, is realizable by a real curve of class d in X

Real schemes in class 1:

- 1:1:0:0
- 1:0:0:0
- 0:0:0:0
- 2:0:0:0

• $Q \subset \mathbb{C}P^2$ a real non-singular maximal quartic

- $Q \subset \mathbb{C}P^2$ a real non-singular maximal quartic
- the double cover of $\mathbb{C}P^2$ ramified along Q yields a 4-spheres real del Pezzo surface

 $A \subset X$ is real of class 1

Real schemes in class 1:

- 1:1:0:0 √
- 1:0:0:0
- 0:0:0:0
- 2:0:0:0

Real schemes in class 1:

- 1:1:0:0 **✓**
- 1:0:0:0
- 0 : 0 : 0 : 0
- 2:0:0:0

Real schemes in class 1:

- 1:1:0:0 √
- 1:0:0:0
- 0 : 0 : 0 : 0
- 2:0:0:0

Via ϕ , realization of all real schemes in class 1 and 2

Class $d \ge 3$

Harnack-Klein inequality no complete set of restrictions

Class d > 3

- Harnack-Klein inequality no complete set of restrictions
- Bézout-type restrictions useful only for small class

Class d > 3

- Harnack-Klein inequality no complete set of restrictions
- Bézout-type restrictions useful only for small class
- Most of all classical obstructions do not seem to apply

Class $\overline{d} > 3$

- Harnack-Klein inequality no complete set of restrictions
- Bézout-type restrictions useful only for small class
- Most of all classical obstructions do not seem to apply
- More complicated to realize real schemes

Class $d \ge 3$

- Harnack-Klein inequality no complete set of restrictions
- Bézout-type restrictions useful only for small class
- Most of all classical obstructions do not seem to apply
- More complicated to realize real schemes

New

New restrictions (Welschinger-type invariants)

Class $d \ge 3$

- Harnack-Klein inequality no complete set of restrictions
- Bézout-type restrictions useful only for small class
- Most of all classical obstructions do not seem to apply
- More complicated to realize real schemes

New

- New restrictions (Welschinger-type invariants)
- New construction method breaking the symmetry (Degeneration and Patchworking)

Welschinger invariants:

 real analogues of g = 0 Gromov-Witten invariants (Welschinger '05)

Welschinger invariants:

- real analogues of g = 0 Gromov-Witten invariants (Welschinger '05)
- count, with signs, real rational curves through a given real collection of points in a given real rational algebraic surface

Welschinger invariants:

- real analogues of g = 0 Gromov-Witten invariants (Welschinger '05)
- count, with signs, real rational curves through a given real collection of points in a given real rational algebraic surface

Case of X:

- g = 0 (Itenberg, Kharlamov and Shustin '17)
- generalizations to higher genus $0 < g \le 3$ (Shustin '14)

Welschinger invariants:

- ullet real analogues of g=0 Gromov-Witten invariants (Welschinger '05)
- count, with signs, real rational curves through a given real collection of points in a given real rational algebraic surface

Case of X:

- g = 0 (Itenberg, Kharlamov and Shustin '17)
- generalizations to higher genus $0 < g \le 3$ (Shustin '14)

Key point: Exploit the existence of g = 3 interpolating real curves

Existence of interpolating real algebraic curves of class k and genus 3

- $k \in \mathbb{Z}_{>1}$, odd $r_1, r_2 \in \mathbb{Z}_{>0}$ such that $r_1 + r_2 = 2k$
- \mathcal{P} be a generic real configuration of 2k + 2 points on X

Existence of interpolating real algebraic curves of class k and genus 3

- $k \in \mathbb{Z}_{>1}$, odd $r_1, r_2 \in \mathbb{Z}_{>0}$ such that $r_1 + r_2 = 2k$
- \mathcal{P} be a generic real configuration of 2k + 2 points on X
- $X_i \supset r_i$ points, with i = 1, 2
- X₃ and X₄ both contain one point

Existence of interpolating real algebraic curves of class k and genus 3

- $k \in \mathbb{Z}_{>1}$, odd $r_1, r_2 \in \mathbb{Z}_{>0}$ such that $r_1 + r_2 = 2k$
- \mathcal{P} be a generic real configuration of 2k + 2 points on X
- $X_i \supset r_i$ points, with i = 1, 2
- X₃ and X₄ both contain one point

Shustin '14

 \exists a real curve T of class k and g=3 in X through \mathfrak{P} . The points of \mathfrak{P} belong to the one-dimensional connected components of $\mathbb{R}T$

Assume \exists **A** of class 5 in X realizing the following real scheme

- k = 3, $r_1 = 5$ and $r_2 = 1$.
- Choose 8 points on $\mathbb{R}X$ as below

- $\exists T$ of class 3 and g = 3 through the 8 points
- The number of connected components of \mathbb{R}^T is 4
- $A \circ T = 30$

• k, odd r_1 , r_2 as before

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

Assume $\mathbb{R}A$ lies on $t \le 4$ spheres of $\mathbb{R}X$ and it has

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

Assume $\mathbb{R}A$ lies on $t \le 4$ spheres of $\mathbb{R}X$ and it has

• $N_1,...,N_{r_1}$ disjoint nests of depth j_h^1 on X_1

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

Assume $\mathbb{R}A$ lies on $t \le 4$ spheres of $\mathbb{R}X$ and it has

- $N_1,...,N_{r_1}$ disjoint nests of depth j_h^1 on X_1
- $N_{r_1+1},...,N_{r_1+r_2}$ disjoint nests of depth j_h^2 on X_2

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

Assume $\mathbb{R}A$ lies on $t \leq 4$ spheres of $\mathbb{R}X$ and it has

- $N_1,...,N_{r_1}$ disjoint nests of depth j_h^1 on X_1
- $N_{r_1+1},...,N_{r_1+r_2}$ disjoint nests of depth j_h^2 on X_2

Proposition (M)

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

Assume $\mathbb{R}A$ lies on $t \leq 4$ spheres of $\mathbb{R}X$ and it has

- $N_1,...,N_{r_1}$ disjoint nests of depth j_h^1 on X_1
- $N_{r_1+1},...,N_{r_1+r_2}$ disjoint nests of depth j_h^2 on X_2

Proposition (M)

1 If $r_1 = 2k - 1$ and $r_2 = 1$, then $\sum_{h=1}^{r_1} j_h^1 \le dk - (t-1)$

- k, odd r_1 , r_2 as before
- A ⊂ X class d real algebraic curve

Assume $\mathbb{R}A$ lies on $t \le 4$ spheres of $\mathbb{R}X$ and it has

- $N_1,...,N_{r_1}$ disjoint nests of depth j_h^1 on X_1
- $N_{r_1+1},...,N_{r_1+r_2}$ disjoint nests of depth j_h^2 on X_2

Proposition (M)

- **1** If $r_1 = 2k 1$ and $r_2 = 1$, then $\sum_{h=1}^{r_1} j_h^1 \le dk (t-1)$
- 2 If $r_1, r_2 > 1$, then $\sum_{h=1}^{r_1} j_h^1 + \sum_{h=r_1+1}^{r_1+r_2} j_h^2 \le dk (t-2)$

Theorem (M)

- ∃ 74 real schemes in class 3, with 8 ovals, non-prohibited by Harnack-Klein inequality and new restrictions
- 47 among those are realizable in class 3

Theorem (M)

- ∃ 74 real schemes in class 3, with 8 ovals, non-prohibited by Harnack-Klein inequality and new restrictions
- 47 among those are realizable in class 3

Remark 2

Real scheme 2 $\sqcup \langle 1 \rangle \sqcup \langle 1 \rangle \sqcup \langle 1 \rangle$ realizable by a real symplectic curve. Not known if realizable by a real algebraic curve

ullet Class 3: Realization of \sim 15 real schemes via the map ϕ

- ullet Class 3: Realization of \sim 15 real schemes via the map ϕ
- Orevkov '02 + other constructions on $\mathbb{R}P^2$

- ullet Class 3: Realization of \sim 15 real schemes via the map ϕ
- Orevkov '02 + other constructions on $\mathbb{R}P^2$
- 237 arrangements in $\mathbb{R}P^2$ of maximal cubics and quartics

- ullet Class 3: Realization of \sim 15 real schemes via the map ϕ
- Orevkov '02 + other constructions on $\mathbb{R}P^2$
- ullet 237 arrangements in ${\mathbb R} P^2$ of maximal cubics and quartics

Symmetric curves and plane curves

 $igg\{ ext{ Symmetric class } d ext{ curves in } X igg\} \longleftarrow igg\{ ext{ Degree } d ext{ plane curves } igg\}$

Breaking the symmetry

• Degeneration methods (Atiyah '58, Brugallé and Puignau '13)

Breaking the symmetry

- Degeneration methods (Atiyah '58, Brugallé and Puignau '13)
- Idea: break X in the union of two real surfaces and working on such surfaces separately

Breaking the symmetry

- Degeneration methods (Atiyah '58, Brugallé and Puignau '13)
- Idea: break X in the union of two real surfaces and working on such surfaces separately
- Variant of patchworking method (Shustin, Tyomkin '06)

Breaking the symmetry

- Degeneration methods (Atiyah '58, Brugallé and Puignau '13)
- Idea: break X in the union of two real surfaces and working on such surfaces separately
- Variant of patchworking method (Shustin, Tyomkin '06)
- Brugallé, Degtyarev, Itenberg, Mangolte '18 (real finite curves)

Breaking the symmetry

- Degeneration methods (Atiyah '58, Brugallé and Puignau '13)
- Idea: break X in the union of two real surfaces and working on such surfaces separately
- Variant of patchworking method (Shustin, Tyomkin '06)
- Brugallé, Degtyarev, Itenberg, Mangolte '18 (real finite curves)

Remark

Some real schemes, if realizable, can not be realized via the anti-canonical map. We can realize some of them for every class $d \ge 5$.

Degeneration

• Q one-parameter real family of plane quartics

- Q one-parameter real family of plane quartics
- \bullet $\tilde{\mathfrak{X}}$ one-parameter real family of del Pezzo surfaces

- Q one-parameter real family of plane quartics
- ullet $ilde{\mathfrak{X}}$ one-parameter real family of del Pezzo surfaces
- real nodal plane quartic \leadsto real nodal del Pezzo surface $\leadsto S \cup T$, where $S \cap T$ along E

- Q one-parameter real family of plane quartics
- ullet $ilde{\mathfrak{X}}$ one-parameter real family of del Pezzo surfaces
- real nodal plane quartic \leadsto real nodal del Pezzo surface \leadsto $S \cup T$, where $S \pitchfork T$ along E
- S is the quadric ellipsoid, $E \subset S$ bidegree (1, 1) curve;

- Q one-parameter real family of plane quartics
- ullet $ilde{\mathfrak{X}}$ one-parameter real family of del Pezzo surfaces
- real nodal plane quartic \leadsto real nodal del Pezzo surface \leadsto $S \cup T$, where $S \cap T$ along E
- S is the quadric ellipsoid, E ⊂ S bidegree (1,1) curve; (T, E) is a nodal degree 2 del Pezzo pair, E ⊂ T (-2)-curve

Cut along $\mathbb{R}E$ and glue back the surfaces into $\bigsqcup_{i=1}^4 S^2$

Cut along $\mathbb{R}E$ and glue back the surfaces into $\bigsqcup_{j=1}^4 S^2$

Cut along $\mathbb{R} E$ and glue back the surfaces into $\bigsqcup_{j=1}^4 S^2$

Cut along $\mathbb{R} E$ and glue back the surfaces into $\bigsqcup_{j=1}^4 S^2$

Topological operation

Topological operation

• Either choices of gluing give us $\bigsqcup_{i=1}^4 S^2$.

Topological operation via an example

- Real algebraic curves $C_S \subset S$ and $C_T \subset T$
- $C_S \pitchfork C_T$ in 4 real points $\subset E$

Topological operation via an example

- Real algebraic curves $C_S \subset S$ and $C_T \subset T$
- $C_S \pitchfork C_T$ in 4 real points $\subset E$
- Such topological construction is realizable algebraically! (Shustin and Tyomkin '06)

Patchworking of surfaces

Realization of class 3 real scheme: $\langle 1 \rangle \sqcup \langle 2 \rangle : 3 : 0 : 0$

Real minimal del Pezzo surfaces of degree 1

• (Y, τ) with $\mathbb{R}Y \cong \mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$

- (Y, τ) with $\mathbb{R}Y \cong \mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
- B ⊂ Y a class k real algebraic curve

- (Y, τ) with $\mathbb{R}Y \cong \mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
- B ⊂ Y a class k real algebraic curve
- $\bullet \ \mathbb{R}B \cong \sqcup_{j=1}^{I} S^{1} \hookrightarrow \mathbb{R}P^{2} \bigsqcup_{j=1}^{4} S^{2}$

- (Y, τ) with $\mathbb{R}Y \cong \mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
- B ⊂ Y a class k real algebraic curve
- $\mathbb{R}B \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow \mathbb{R}P^{2} \bigsqcup_{i=1}^{4} S^{2}$
- Harnack-Klein inequality + Adjunction formula \leadsto bound on the number of connected components of $\mathbb{R}B$

- (Y, τ) with $\mathbb{R}Y \cong \mathbb{R}P^2 \bigsqcup_{j=1}^4 S^2$
- B ⊂ Y a class k real algebraic curve
- $\mathbb{R}B \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow \mathbb{R}P^{2} \bigsqcup_{i=1}^{4} S^{2}$
- Harnack-Klein inequality + Adjunction formula \leadsto bound on the number of connected components of $\mathbb{R}B$
- Bézout-type restrictions

- (Y, τ) with $\mathbb{R}Y \cong \mathbb{R}P^2 \bigsqcup_{i=1}^4 S^2$
- B ⊂ Y a class k real algebraic curve
- $\mathbb{R}B \cong \sqcup_{i=1}^{I} S^{1} \hookrightarrow \mathbb{R}P^{2} \bigsqcup_{i=1}^{4} S^{2}$
- Harnack-Klein inequality + Adjunction formula \leadsto bound on the number of connected components of $\mathbb{R}B$
- Bézout-type restrictions
- Main construction tool: anti-bicanonical map

• Q quadratic cone in $\mathbb{C}P^3$

- Q quadratic cone in $\mathbb{C}P^3$
- \tilde{S} real sextic on Q

- Q quadratic cone in $\mathbb{C}P^3$
- \tilde{S} real sextic on Q
- conic in Q lifts to class 2 curve in Y

- Q quadratic cone in $\mathbb{C}P^3$
- \tilde{S} real sextic on Q
- conic in Q lifts to class 2 curve in Y
- ullet the double cover of Q ramified along \tilde{S} yields a real minimal del Pezzo surface

- Q quadratic cone in $\mathbb{C}P^3$
- \tilde{S} real sextic on Q
- conic in Q lifts to class 2 curve in Y
- ullet the double cover of Q ramified along \tilde{S} yields a real minimal del Pezzo surface
- Negative and positive connected components of RY

 \bullet Coarse real scheme $\mathcal{J} \; \sqcup \; 1|\; 1:1:2:0$

Example

- Coarse real scheme $\mathcal{J} \sqcup 1 \mid 1:1:2:0$
- Real scheme $\mathcal{J} \sqcup 1 \mid 1:2:1:0$

Theorem (M)

Every (coarse) real scheme in class k = 1, 2, 3, which is not prohibited by Harnack-Klein and Bézout-type restrictions, is realizable in Y

Theorem (M)

Every (coarse) real scheme in class k = 1, 2, 3, which is not prohibited by Harnack-Klein and Bézout-type restrictions, is realizable in Y

Constructions: variant Harnack's method and perturbation method
 + anti-bicanonical map

Theorem (M)

Every (coarse) real scheme in class k = 1, 2, 3, which is not prohibited by Harnack-Klein and Bézout-type restrictions, is realizable in Y

- Constructions: variant Harnack's method and perturbation method + anti-bicanonical map
- Two real schemes in class 2 (resp. class 3) requires other construction

 $0 \mid 0 : 0 : \langle \langle 1 \rangle \rangle : 0$

Theorem (M)

Every (coarse) real scheme in class k = 1, 2, 3, which is not prohibited by Harnack-Klein and Bézout-type restrictions, is realizable in Y

- Constructions: variant Harnack's method and perturbation method
 + anti-bicanonical map
- Two real schemes in class 2 (resp. class 3) requires other construction

Expect more difficulties for classifications in class d ≥ 4

Perspectives

ullet Define and compute enumerative invariants over $\mathbb{Z}/2\mathbb{Z}$ for real algebraic surfaces with non-connected real part \leadsto restrictions on topology of real algebraic curves

Perspectives

- Define and compute enumerative invariants over $\mathbb{Z}/2\mathbb{Z}$ for real algebraic surfaces with non-connected real part \leadsto restrictions on topology of real algebraic curves
- Construct real algebraic curves with prescribed topology on real algebraic surfaces with non-connected real part, to show that some Welschinger invariants are zero

Perspectives

- Define and compute enumerative invariants over Z/2Z for real algebraic surfaces with non-connected real part → restrictions on topology of real algebraic curves
- Construct real algebraic curves with prescribed topology on real algebraic surfaces with non-connected real part, to show that some Welschinger invariants are zero
- Explore algebraic vs symplectic on 4-spheres real del Pezzo surfaces of degree 2

THANK YOU FOR THE ATTENTION!