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ABSTRACT. It goes back to Ahlfors that a real algebraic curve C admits a separating morphism f to the complex projective
line if and only if the real part of the curve disconnects its complex part, i.e. the curve is separating. The degree of such f is
bounded from below by the number l of real connected components of RC. The sharpness of this bound is not a priori clear.
We prove that real algebraic separating curves, embedded in some ambient surface and with l bounded in a certain way, do
not admit separating morphisms of lowest possible degree. Moreover, this result of non-existence can be applied to show that
certain real separating plane curves of degree d, do not admit totally real pencils of curves of degree k such that kd ≤ l.

RÉSUMÉ. Il remonte à Ahlfors qu’une courbe algébrique réelle C admet un morphisme séparant f à la droite complexe
projective si et seulement si la partie réelle de la courbe déconnecte sa partie complexe, i.e. la courbe est séparante. Le degré
d’un tel f est borné par le bas par le nombre de composantes connexes réelles de RC. La netteté de cette borne n’est pas claire
a priori. Nous prouvons que les courbes algébriques réelles séparantes, plongées dans une surface ambiante et avec l borné
d’une certaine manière, n’admettent pas de morphismes séparants de degré le plus bas que possible. De plus, ce résultat de
non-existence peut être appliqué pour montrer que certaines courbes réelles séparantes planes de degré d, n’admettent pas de
pinceaux de courbes de degré k totalement réels tels que kd ≤ l.
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1. INTRODUCTION

A real algebraic variety is a compact complex algebraic variety X equipped with an anti-holomorphic involution
σ : X → X , called real structure. The real part RX of X is the set of points fixed by the involution σ.

Let C be any non-singular real algebraic curve. Denote by C1, . . . , Cl the connected components of RC. Harnack-
Klein’s inequality [Har76, Kle73] bounds l by the genus g of C plus one. If C \RC is connected, we say that C is of type
II or non-separating, otherwise of type I or separating. Looking at the real part of the curve and its position with respect
to its complexification gives information about l and vice versa. For example, we know that if l equals g + 1, i.e. C is
maximal, then C is of type I. Or, if C is of type I then l has the parity of g+1. Rokhlin promoted and contributed to this
new point of view; an example of Rokhlin’s contribution is the introduction and the study of the complex orientations
of a separating real algebraic curve [Rok74]. Namely, if C is of type I, the two halves of C \ RC induce two opposite
orientations on RC called complex orientations of the curve. Looking at complex orientations of separating real curves
embedded in some ambient surface has allowed a change of prospective and a remarkable progress in the study of their
topology and a refinement of their classifications.

Definition 1.1. We say that a real morphism f from a real algebraic curve C to the complex projective line CP1 is
separating if f−1(RP1) = RC.

According to Ahlfors [Ahl50, §4.2], there exists a separating morphism f : C → CP1 if and only if C is separating.
In this paper, we focus on the relation between the topology of a real separating curve and the existence of separating
morphisms of given degree.

1.1. Organisation of the paper. Before stating the main results of this paper, Theorems 1.13 and 1.15, we present
them restricted to the case of real algebraic plane projective curves in Section 1.2 (Proposition 1.2). In Section 1.3, we
present known results and generalities of separating morphisms. In Section 1.4, we focus on real plane curves admitting
totally real pencils (Corollary 1.6 and Proposition 1.8). Afterwards, Theorems 1.13 and 1.15 are stated in Section 1.5
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and proved in Section 2.1. Finally, in Section 2.2, we present some examples, applications of the main results and we
prove Proposition 1.8.

Acknowledgements. I would like to thank Mario Kummer, Stepan Orevkov and Kris Shaw for their interest in this
paper; the referee for useful suggestions and comments; Erwan Brugallé and Hannah Markwig for remarks and advice
on a preliminary version of the paper. Thanks to Athene Grant.

1.2. Real plane curves. Let us consider a real algebraic separating plane projective curve C. The following proposition
shows that there is a relation between degC, the number of connected components of RC and the existence of separating
morphisms f : C → CP1 of a certain degree.

Proposition 1.2 (Particular case of Theorems 1.13 and 1.15). Let C be a non-singular real algebraic plane projective
curve of type I and with l real connected components. Assume one of the following:

(1) The degree of C is 2s+ 1, for some s ∈ Z≥2 and

1− ε+
s2 − 5s+ 4

2
< ⌊ l

2
⌋ < s2 + s− 2

2
,

where ε ∈ {0, 1} such that l ≡ ε mod 2.
(2) The degree of C is 2s, for some s ∈ Z≥3 and

max(0, 1− ε+
s2 − 7s+ 10

2
) < ⌊ l − 1

2
⌋ < s2 − s− 2

2
,

where ε ∈ {0, 1} such that l − 1 ≡ ε mod 2.

Then C admits no separating morphisms of degree l.

Proposition 1.2 falls within the line of results relating topology, complex orientations and properties of separating
plane curves, such as Rokhlin’s complex orientations formula ([Rok74], [Mis75]), and such as [Ore21, Theorem 1.1],
where Orevkov shows that there are finer relations for the numbers which intervene in the complex orientations formula.

As corollaries of Proposition 1.2, one can find obstructions for the existence of totally real pencils of curves of a
certain degree for given separating plane curves; see Section 1.4.

1.3. Generalities of separating morphisms. A separating morphism f : C → CP1 is always unramified once re-
stricted to RC; see [KS20a, Theorem 2.19]. Therefore, the restriction of f to each connected component of RC is a
covering map of RP1. This implies that the degree of a separating morphism is at least as big as the number of con-
nected components of RC. Actually, the definition of separating morphism is more general and includes real morphisms
between any real algebraic varieties of same dimension. In order to a have a general idea of the subject, we refer the
interested reader to [KS20a] and [KTM23]. In the context of this paper, we only need Definition 1.1.

In [Hui01], [Gab06],[CH13], [Cop13], [KS20b], [Ore18] properties of separating morphisms and their existence are
treated. For example, [Gab06, Theorem 7.1] states that a genus g real separating curve with l real connected com-
ponents admits a separating morphism of degree at most g+l+1

2 . Later, Coppens, in [Cop13], constructs, for every
value h between l, the minimum for the degree of a separating morphism, and g+l+1

2 , a separating curve C of genus
g and with l real connected components such that h is the smallest possible degree of a separating morphism of C. In
[KS20b], the authors fix a separating curve C and study all separating morphisms of C as follows. Let RC consist
of l connected components C1, . . . , Cl. Set di(f) ∈ N the degree of the covering map f |Ci : Ci → RP1 and set
d(f) := (d1(f), . . . , dl(f)). Let us denote by t :=

󰁓l
i=1 di(f) the degree of f . The set Sep(C) of all such degree par-

titions forms a semigroup, called separating semigroup, and for all elements d ∈ Sep(C), satisfying certain conditions,
it is shown that d + Zl

≥0 is also contained in Sep(C). So, in certain cases, in order to understand Sep(C) for a given
separating curve C, it is important to understand which minimal possible element Sep(C) contains, where with minimal
we mean that t is of minimal possible value.

Remark 1.3. Thanks to Harnack-Klein inequality, any real curve of genus g cannot have more than g+1 real connected
components. By Riemann-Roch theorem, all non-singular real curves with l = g + 1 real connected components admit
a separating morphism of degree l. But, whenever l < g + 1, it is not a priori clear whether a separating morphism of
degree l exists.
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1.4. Obstruction for the existence of totally real pencils. In this section, we see how obstructions for the existence of
separating morphisms may lead to obstructions for the existence of totally real pencils.

Definition 1.4. Let C be a non-singular real algebraic plane projective curve of type I. We say that C admits a totally real
pencil of curves of degree k if there exists an integer k such that there are f, g ∈ R[x, y, z]k such that V (f, g) ∩ C = ∅
and V (λf + µg) ∩ C consists of real points only for all λ, µ ∈ R not both zero.

Kummer and Shaw, in [KS20b], also prove that for all real separating curves embedded in the complex projective
plane, there exist infinitely many totally real pencils of curves.

Theorem 1.5. ([KS20b, Theorem 1.6]) Let C be a non-singular real algebraic plane projective curve of type I. Then,
there exists a positive integer k such that the curve C admits a totally real pencil of curves of degree k′, for all k′ ≥ k.

In [KS20b, Question 3.6], the authors wonder which may be the minimal possible value of k in Theorem 1.5. An
immediate corollary of Proposition 1.2 gives a lower bound for k, as follows.

Corollary 1.6. Let C be a non-singular degree d real algebraic plane projective curve of type I and with l real connected
components. Assume that C satisfies the hypotheses of Proposition 1.2. Then C admits no totally real pencil of curves
of degree k such that kd ≤ l.

Corollary 1.6 gives obstructions for the existence of certain totally real pencils of curves, but we do not know yet how
to compute the minimal value for k of Theorem 1.5.

Remark 1.7. As remarked in [KS20b, Remark 3.5], according to [Ahl50, §4.2], real separating plane curves admit
separating morphisms (whose degree is a priori unknown). Hence, there exists an integer k such that there are f, g ∈
R[x, y, z]k such that V (λf + µg) ∩ C consists of real points only for all λ, µ ∈ R not both zero. The difference with
Definition 1.4 is that V (f, g) ∩ C may be non-empty. Analogously, [Gab06, Theorem 1.7] implies the existence of
separating morphisms of degree between l and g+l+1

2 and, once again, this does not imply that a given real separating
plane curve of genus g and with l real connected components, admits totally real pencils of curves of a certain degree
depending on l and g, in the sense of Definition 1.4.

In order to have examples of separating real curves for which Corollary 1.6 holds, we prove the following.

Proposition 1.8. For all d ∈ N≥5 and for all l ≥ ⌈d
2⌉ such that l has the parity of ⌈d

2⌉ and is bounded as in Proposition
1.2, there exists a non-singular real plane projective curve Bd of degree d, of type I and with l real connected components.
Then, by Corollary 1.6, the curve Bd admits no totally real pencils of curves of degree k such that k ≤ l

d .

Remark that, in order to prove Proposition 1.8, it is enough to construct real plane separating curves satisfying the
hypotheses of Proposition 1.2. This is done in Proposition 2.4; see Section 2.2.

The Brill-Noether theorem implies that there exist real algebraic separating curves of genus g, which admit no sepa-
rating morphisms of degree less than ⌊ g+3

2 ⌋. On the other hand, Proposition 1.8 implies the existence of real separating
plane curves C of degree 2s+1, which admit no separating morphisms of degree less or equal to l = s2 + n, where l is
the number of connected components of RC and n is a non-negative integer such that

(1.9)

󰀫
n ≡ 1 (mod 2)
2s2−s+3−ε

2 < s2 + n < s2 + s− 2 + ε,

with ε ∈ {0, 1} such that ε ≡ s+1 mod 2. It follows that, since s2+n > ⌊ g(C)+3
2 ⌋ = 2s2 − s+ 3− ε

2
, the existence

of a real separating curve admitting no separating morphisms of degree less or equal to s2 +n cannot be proved directly
via Brill-Noether theory.

1.5. Statement of the main results. In this paper, we consider real separating curves embedded in some ambient real
surface and focus on their separating morphisms. The key tools of our approach are the fact that all separating curves
come equipped with two possible opposite complex orientations and the use of [Ore21, Theorem 3.2] as shown in
[Ore21, Example 3.3].

Theorem 1.10. ([Ore21, Theorem 3.2]) Let X be a smooth real algebraic surface and C ⊂ X a non-singular real
algebraic separating curve. Let D be a real divisor belonging to the linear system |C +KX |. Assume that D has not C
as a component. We may always write D = 2D0 +D1 with D1 a reduced curve and D0 an effective divisor. Let us fix a
complex orientation on RC and an orientation O on RX \ (RC ∪RD1) which changes each time we cross RC ∪RD1
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at its smooth points. The latter orientation induces a boundary orientation on RC \ (RC ∩D1). Let f : C → CP1 be
a separating morphism. Then it is impossible that, for some p ∈ RP1, the set f−1(p) \ supp(D) is non-empty and the
two orientations coincide at each point of the set.

In [Ore21], Orevkov shows interesting applications of Theorem 1.10, such as [Ore21, Theorem 1.1] and the construc-
tion of complex schemes (i.e. real schemes endowed with an orientation) in the real projective plane which are realisable
by real pseudoholomorphic separating plane curves of odd degree and not realisable by real algebraic separating plane
curves of same degree [Ore21, Proposition 1.5]. Moreover, other applications of [Ore21, Theorem 3.2] are presented via
examples. Now, let us introduce Set-up 1.11 and state the main results, Theorems 1.13 and 1.15.

Setup 1.11. Let X be a smooth real algebraic surface and C ⊂ X a non-singular real algebraic separating curve.
Assume that

(1) the surface X has holomorphic Euler characteristic of the trivial bundle χ(OX) ≥ 1;
(2) (−KX)2 ≥ 0;
(3) −KX .D ≥ 0 for all effective divisors D.

Let D be a real divisor belonging to the linear system |C + KX |. Assume that D has not C as a component. Fix a
decomposition 2D0+D1 of the divisor D with the following properties. The divisor D0 is effective and D1 is a reduced
curve such that D2

0−D0.KX

2 ∈ Z≥0 is maximised; see Example 1.12.

Example 1.12. Let C be a non-singular real algebraic curve of degree 2s in CP2. Then CP2 satisfies (1), (2) and (3) of
Set-up 1.11 and, if s ≥ 2, the divisor D0 realises the class of a plane curve of degree s− 2 and D1 is a line in CP2.

Theorem 1.13. Assume Setup 1.11. Denote with l the number of connected components of RC. Then, if
(4) D1 = ∅;
(5) −KX .D0 > 0;
(6)

1− ε+
D2

0 +D0KX

2
< ⌊ l

2
⌋ < D2

0 −D0.KX

2
,

where ε ∈ {0, 1} such that ε ≡ l mod 2;
there are no separating morphisms f : C → CP1 of degree l.

Remark 1.14. Theorem 1.13 implies (1) of Proposition 1.2. In fact, the complex projective plane and any non-singular
real plane separating curve of odd degree d ≥ 5, satisfying the bound in (1) of Proposition 1.2, satisfy the hypotheses of
Theorem 1.13. Remark that D0 realises the class of a plane curve of degree d−3

2 .

In the following, we are going to extend Theorem 1.13 to separating curves in X for which D1 is not empty. In this
context, in order to show that there are no separating morphisms f : C → CP1 of degree l, one needs to impose stricter
bounds on the number l of connected components of RC.

Theorem 1.15. Assume Setup 1.11. Denote with l the number of connected components of RC. Assume that D1 ∕= ∅.
Set m = min(

D2
1−D1KX

2 − 1, l − 1).
Then, if

(4) −KX .D1 > 0;
(5) D2

1 < l;
(6) −KX .D0 > 0;
(7)

max(⌊D
2
1 −m

2
⌋, 1− ε+

D2
0 +D0KX

2
) < ⌊ l −m

2
⌋ < D2

0 −D0KX

2
,

where ε ∈ {0, 1} such that ε ≡ l −m mod 2,
there are no separating morphisms f : C → CP1 of degree l.

Remark 1.16. Remark that the decomposition of the divisor D, fixed in Setup 1.11, allows one to maximise the bounds
for l in Theorems 1.13 and 1.15.

As a corollary of Theorems 1.13 and 1.15, we prove Proposition 1.2.

Proof of Proposition 1.2. The point (1) of Proposition 1.2 is proven in Remark 1.14. So, let C be a non-singular real
algebraic plane curve as in (2) of Proposition 1.2. Then, this curve C satisfies the hypotheses of Theorem 1.15. Indeed,
the divisor D0 realises the class of a plane curve of degree s− 2 and D1 is a line. The number m = min(1, l − 1) must
be one because Rokhlin’s complex orientations formula ([Rok74]) bounds l to be bigger or equal to s. It follows that the
hypotheses of Theorem 1.15 apply to C ⊂ CP2. □
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2. THEOREMS 1.13 AND 1.15 AND APPLICATIONS

Section 2.1 is uniquely devoted to the proof of Theorem 1.13 and Theorem 1.15. Afterwards, in Section 2.2, we
present examples, applications of Theorems 1.13 and 1.15, and we prove Proposition 1.8.

2.1. Proof of Theorems 1.13 and 1.15.

Proof of Theorem 1.13. Denote by Ci the connected components of RC where i = 1, . . . l. For the sake of contradiction,
assume that there exists a separating morphism f : C → P1 of degree l. Then, for every p ∈ RP1, the set f−1(p) =

{p1, . . . , pl} is a collection of l real points such that every Ci contains exactly one pi. The positive integer D2
0−D0.KX

2
is always less or equal than the dimension of the linear system of curves in X of class D0. To prove the latter is enough
to use Riemann-Roch theorem

dimH0(X,L(D0))− dimH1(X,L(D0)) + dimH2(X,L(D0)) = χ(OX) +
D2

0 −D0.KX

2
and the hypotheses of Theorem 1.13. In fact, hypothesis (1) implies that

dimH0(X,L(D0)) + dimH2(X,L(D0)) ≥ 1 +
D2

0 −D0.KX

2
;

hypotheses (2), (5) imply that −KX .(KX − D0) < 0. Then, hypothesis (3) implies that KX − D0 is non-effective
and, therefore, the dimension of H0(X,L(KX − D0)) is zero. Finally H2(X,L(D0)) ≃ dimH0(X,L(KX − D0))
by Serre duality.

It follows that, fixed a configuration of D2
0−D0.KX

2 points, there always exists at least one curve of class D0 passing
through the configuration.

Let us fix an orientation on RX \ RC which changes each time we cross RC. The latter orientation induces a
boundary orientation O on RC. Fix some p in RP1.

Define Yp (resp. NYp) as the set of points in f−1(p) \ supp(D) on which the complex orientation and the orientation
O agree (resp. do not agree). Remark that Theorem 1.10 tells us that if the set f−1(p) \ supp(D) is non-empty, one has
that Yp and NYp are both non-empty. In the following, we are going to use Theorem 1.10 to get a contradiction.

Fix one of the two complex orientations on RC. Then, remark that either the number V 1
p of pi’s where the complex

orientation and the orientation O agree, or the number V 2
p of the pi’s where the two orientations do not agree, does not

exceed ⌊ l
2⌋. Given a collection P of D2

0−D0.KX

2 real points in X , there exists a curve A of class D0 passing through

P. By hypothesis ⌊ l
2⌋ <

D2
0−D0.KX

2 , therefore it is possible to choose such a collection P so that it contains at least
⌊ l
2⌋ points of f−1(p) belonging to V j

p , for an opportune j ∈ {1, 2}. It follows that, if the set f−1(p) \ supp(D) is
non-empty, either NYp or Yp is empty, which contradicts Theorem 1.10. It remains to show that f−1(p) \ supp(D) is
non-empty. Assume that for all configurations P of

D2
0 −D0.KX

2
= ⌊ l

2
⌋+ h

points, containing at least ⌊ l
2⌋ points of f−1(p) belonging to V j

p , for an opportune j ∈ {1, 2}, every curve A of class
D0 passing through P contains f−1(p). Since h > 0, it follows that there exist at least two distinct curves A, Ã of class
D0 intersecting in at least l + h− 1 points. On the other hand

D2
0 < l + h− 1 =

D2
0 −D0.KX

2
+ ⌊ l

2
⌋+ ε− 1

because of hypothesis (6) and, therefore, we obtain a contradiction.
□

Let us prove Theorem 1.15 via a strategy analogous to that explained in the proof of Theorem 1.13, minding the role
played by D1; see Setup 1.11.

Proof of Theorem 1.15. Denote by Ci the connected components of RC where i = 1, . . . l. For the sake of contradiction,
assume that there exists a separating morphism f : C → P1 of degree l. Let us fix an orientation on RX \ (RC ∪RD1)
which changes each time we cross RC ∪ RD1 at its smooth points; see [Ore21, Proof of Theorem 3.2] for details. The
latter orientation induces a boundary orientation O on RC. Moreover, fix some p in RP1 and denote with pi ∈ Ci the
points belonging to f−1(p). Analogously to the proof of Theorem 1.13, thanks to hypotheses (1)-(4) and Riemann-
Roch theorem, one can pick D1 as the curve passing through a given collection P̃ of D2

1−D1KX

2 points contained in

m = min(
D2

1−D1KX

2 − 1, l − 1) connected components Cj1 , . . . , Cjm . Moreover, choose the collection P̃ such that it
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contains the points pj1 , . . . , pjm of f−1(p). Remark that D1 cannot contain all points of f−1(p) because of hypothesis
(5). It may happen that D1 contains more than m points among those of f−1(p), nevertheless, in general, we do not
have control on that.

As in the proof of Theorem 1.13, define Yp and NYp. Fix one of the two complex orientations on RC. Then, remark
that either the number V 1

p of pi’s contained in RC \
󰁉m

i=1 Cji , where the complex orientation and the orientation O

agree, or the number V 2
p of the pi’s in RC \

󰁉m
i=1 Cji , where the two orientations do not agree, does not exceed ⌊ l−m

2 ⌋.

Therefore, we pick a collection P of D2
0−D0.KX

2 real points such that these include the points of V j
p , for an opportune

j ∈ {1, 2}. Once again, thanks to the same argument used in the proof of Theorem 1.13, the set f−1(p) \ supp(D) is
non-empty, and either NYp or Yp is empty, which contradicts Theorem 1.10. □
2.2. Examples and Applications. First, let us introduce some notation and terminology for real curves in the real pro-
jective plane. The real locus of a non-singular real plane curve is homeomorphic to a disjoint union of circles embedded
in RP2. Each circle can be embedded in RP2 in two different ways: if it realises the trivial-class in H1(RP2;Z/2Z),
it is called oval, otherwise it is called pseudoline. If a non-singular real plane curve has even degree then its real locus
consists of ovals only; otherwise of exactly one pseudoline and ovals.

An oval in RP2 separates two disjoint non-homeomorphic connected components: the connected component homeo-
morphic to a disk is called interior of the oval; the other one is called exterior of the oval. For each pair of ovals, if one
is in the interior of the other we speak about an injective pair, otherwise a non-injective pair.

Definition 2.1. Let A ⊂ CP2 be a non-singular real algebraic curve. We say that A has real scheme S if the pair
(RP2,RA) realises the topological type S, up to homeomorphism of RP2.

Let us consider real separating curves in the complex projective plane and focus on [KS20b, Question 3.6] (see the
beginning of Section 1.4). A first known example concerns real separating plane curves of degree 2s or 2s+ 1 having a
nest of maximal depth s, i.e. there are s ovals and any two ovals of the collection form an injective pair. These curves
admit a totally real pencil of lines. In fact, for any fixed point q in the interior of the innermost oval of the nest, there
exists a totally real pencil of lines with base point q. Some more examples can be found in [Tou13], where for some
pairs (A, S), where A is a real separating plane sextic with 9 ovals and S its real scheme in RP2, the minimal value for
k of Theorem 1.5, is shown to be equal to 3.

FIGURE 1. (RP2,RA,RL) of Example 2.2. Double arrows denote O, simple arrows the fixed com-
plex orientation of RA and • the points in f−1(p).

Example 2.2. Let A be a non-singular plane quintic of type I realising the real scheme with 4 ovals; see Fig. 1. We are
going to show that there exist no separating morphisms f : A → CP1 of degree 5. This result does not follow directly
from Proposition 1.2, but one can still use Theorem 1.10 in order to prove the statement.

For the sake of contradiction assume that such an f exists. Fix p ∈ RP1. Let us use the notation in Setup 1.11. The
divisor D0 realises the class of a line. Fix an orientation O that changes each time we cross RA. Moreover, choose
one of the two complex orientations of RA. Let a (resp. b) be the number of connected components of RA where the
two orientations coincide (resp. are opposite). Since a + b = 5, we have a ≤ 2 or b ≤ 2. Up to exchange a and b (by
reversing the complex orientation), we assume that b ≤ 2 and we trace a line L through the points in f−1(p) belonging
to these b connected components; see as a toy example Fig. 1. Since L cannot contain all points in f−1(p), we get a
contradiction thanks to Theorem 1.10.

In the following, we prove Proposition 2.4, which implies Proposition 1.8. The content of Proposition 2.4 is a well
known fact in the study of the topology of real algebraic separating plane curves. Nevertheless, to our knowledge,
there is no proof of it in the literature. Therefore, for the interested reader, we present a proof relying on a variation
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of Harnack’s construction method [Har76], [Mar79, pag. II.4] and [Fie81, Section 2], which allows us to obtain type I
curves when perturbing the union of two type I curves intersecting transversally in real points only.

Theorem 2.3. [Fie81, Section 2] Let A1 and A2 be two non-singular real plane projective separating curves of degree
respectively d1 and d2 such that they intersect transversally in d1d2 distinct real double points and each of them is
equipped with one of its two complex orientations. Let B be a non-singular real plane curve of degree d = d1 + d2
obtained from A1∪A2 by a small perturbation respecting the chosen complex orientations at every smoothing of a double
point. Then B is separating and the orientation obtained on RB from those of RA1 ∪ RA2 is a complex orientation of
B.

Proposition 2.4. For every positive integer d and for every ⌈d
2⌉ ≤ ld ≤ (d−1)(d−2)

2 + 1, where ld is an integer that has
the parity of ⌈d

2⌉, there exists a non-singular real separating plane projective curve A of degree d such that RA has ld
connected components.

Proof. In the following, whenever we consider a plane curve A, we denote its polynomial by a(x, y, z). Let us fix a real
line L in CP2. In order to prove the statement, we show that for any positive integer d and for any integer ld satisfying
the hypotheses, there exists a non-singular real plane separating curve Bd with ld real connected components such that
a unique connected component of RBd intersects RL transversally in d points as in Fig. 2.

Base case: For fixed degree d = 1, 2 and 3 the only possible value for ld is respectively 1 and 2 and any non-singular
real curve Bd of one such degree d and such ld as number of real connected components is maximal, therefore it can be
obtained directly via Harnack construction’s method ([Har76]); in particular, the curve Bd can be constructed such that
a unique connected component of RBd intersects RL in d points.

󰁽󰂀󰁿󰁾

d real intersections
Fig. 2.1

󰁽󰂀󰁿󰁾

d real intersections
Fig. 2.2

FIGURE 2. The union of a connected component of RBd and RL. The degree of Bd is odd in Fig.
2.1 and even in Fig. 2.2

Induction step: Assume that for degree d− 1 and for any integer ld−1 having the parity of ⌈d−1
2 ⌉ and with ⌈d−1

2 ⌉ ≤
ld−1 ≤ (d−2)(d−3)

2 +1, there exists a non-singular real plane separating curve Bd−1 with ld−1 real connected components
such that a unique connected component of RBd−1 intersects RL transversally in d− 1 points as in Fig. 2.

For any fixed pair (d− 1, ld−1) as above, we are going to construct a non-singular real plane separating curve Bd of
degree d

(i) with ld = ld−1 + d− 2
(ii) with ld = ld−1 + δ, where δ = d mod 2 and δ ∈ {0, 1},

real connected components such that a unique connected component of RBd intersects RL in d points as in Fig. 2. Such
construction will end the proof. In fact, remark that, for any given pair (d, ld) such that ld ≡ ⌈d

2⌉ mod 2 and

⌈d
2
⌉ ≤ ld ≤ (d− 1)(d− 2)

2
+ 1,

there exists, by induction hypothesis, a non-singular real plane separating curve of degree d − 1 either with ld−1 =
ld − d+ 2 or ld−1 = ld − δ.

Let us fix a complex orientation on RL and RBd−1:

• as in Fig. 3.1, respectively Fig. 3.2, if d− 1 is odd.
• as in Fig. 3.3, respectively Fig. 3.4, if d− 1 is even.

Moreover, choose a connected component H among those of RL \RBd−1. If d− 1 is even, choose H in the exterior of
the oval intersecting RL; see Fig. 3.
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H H

H H

Fig. 3.1

d lines󰁽󰂀󰁿󰁾

Fig. 3.2

d lines󰁽󰂀󰁿󰁾

Fig. 3.3

d lines󰁽󰂀󰁿󰁾

Fig. 3.4

d lines󰁽󰂀󰁿󰁾

FIGURE 3. The union of a connected component of RBd−1, the line RL and d real lines. The degree
of Bd−1 is odd in Fig. 3.1-2 and even in Fig. 3.3-4. Arrows denote a fixed complex orientation on
respectively RBd−1 and RL.

Fig. 4.1: ld = ld−1

d intersections󰁽󰂀󰁿󰁾

Fig. 4.2: ld = ld−1 + d− 2

d intersections󰁽󰂀󰁿󰁾

Fig. 4.3: ld = ld−1 + d− 2

d intersections󰁽󰂀󰁿󰁾

Fig. 4.4: ld = ld−1 + 1

d intersections󰁽󰂀󰁿󰁾

FIGURE 4. A small type I perturbation of the union of a connected component of RBd−1, the line RL
and d real lines. The degree of Bd is even in Fig. 4.1-2 and odd in Fig. 4.3-4.

Pick d real lines A1, . . . , Ad intersecting transversally H. Then, for ε ∈ R ∕=0 small enough, up to a choice of the sign
of ε, one can perturb Bd−1∪L and obtain a real separating curve Bd as zero set of the polynomial bd−1(x, y, z)l(x, y, z)+
εa1(x, y, z) . . . ad(x, y, z) = 0 and such that

• a connected component RBd intersects RL transversally in d points as in Fig. 4;
• with ld = ld−1 + d − 2, respectively with ld = ld−1 + δ, where δ = d mod 2 and δ ∈ {0, 1}, real connected

components; see Fig. 4.

□
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We conclude looking at separating real curves in a different ambient surface.
Let Q be CP1 × CP1, equipped with the anti-holomorphic involution σ : Q → Q sending (x, y) to (y, x), where

x = [x0 : x1] and y = [y0 : y1] are in CP1 and x = [x0 : x1] and y = [y0 : y1] are respectively the images of x and y via
the standard complex conjugation on CP1. The real part of Q is homeomorphic to a 2-sphere and Q is called quadric
ellipsoid. A non-singular real algebraic curve A on Q is defined by a bi-homogeneous polynomial of bidegree (d, d)

P (x, y) =
󰁛

0≤i,j≤d

ai,jx
i
0x

d−i
1 yj0y

d−j
1 = 0,

where d is a positive integer and the coefficients satisfy ai,j = aj,i. If A is separating then the number of the connected
components of RA has the parity of d.

Corollary 2.5. Let A be a non-singular real algebraic curve of type I and with l real connected components in the
quadric ellipsoid Q. Assume one of the following:

(1) The bidegree of A is (2s, 2s), for some s ∈ Z≥2 and

1 + s2 − 4s+ 3 <
l

2
< s2 − 1.

(2) The bidegree of A is (2s+ 1, 2s+ 1), for some s ∈ Z≥2 and

max(0, s2 − 4s+ 3) <
l − 3

2
< s2 − 1.

Then A admits no separating morphisms of degree l.

Proof. Theorems 1.15 and 1.13 apply to real separating bidegree (d, d) curves on the quadric ellipsoid. If d = 2s + 1,
the curve D1 has bidegree (1, 1) and, therefore, the number m equals 2; otherwise, i.e. if d = 2s, the curve D1 is empty.
The divisor D0 realises the class of a curve of bidegree (s− 1, s− 1). □

Real schemes realised by non-singular real algebraic curves of bidegree (d, d) on Q are completely classified for
all d ≤ 5; see [GS80], [Mik94] and [Man21]. Moreover such classifications distinguish the cases in which a given
topological type may or may not be realised by a real algebraic curve of type I.

For d ≤ 5, we report in Table 1 a complete list of real schemes realised by type I real algebraic curves of bidegree
(d, d), with l real connected components, where l satisfies the hypotheses of Corollary 2.5. Hence, real separating curves
of bidegree (d, d) realising any among such real schemes do not admit separating morphisms of degree l. In order to
understand Table 1, let us introduce some notation. Let A be a non-singular bidegree (d, d) real curve on Q. The real
connected components of A are called ovals. An oval in RQ bounds two disks; therefore, on RQ interior and exterior of
an oval are not well defined. It follows that the encoding of real schemes on RQ is not well defined either and it depends
on the choice of a point on RQ\RA. Let

󰁉
i Bi be a collection of ovals in RQ. We say that the pair (RQ,

󰁉
i Bi) realises

S if there exists a point p ∈ RQ \
󰁉

i Bi such that (RQ \ {p},
󰁉

i Bi) realises S. So that, in order to encode the topology
of a real scheme in RQ, we introduce some notation to encode that of real schemes in R2, which is homeomorphic to
RQ deprived of a point. Let us call oval any circle embedded in R2. Analogously to the case of RP2, in R2 one can
define interior and exterior of an oval and (non-)injective pairs for each pair of ovals; see the beginning of Section 2.2.

Notation 2.6. Let us consider collections of disjoint ovals in R2. An empty collection of ovals is denoted by 〈0〉. We say
that a disjoint collection of l ovals realises 〈l〉 if there are no injective pairs. The symbol 〈1〈S〉〉 denotes the disjoint union
of a non-empty collection of ovals realising 〈S〉, and an oval forming an injective pair with each oval of the collection.
The disjoint union of any two collections of ovals, realising respectively 〈S′〉 and 〈S′′〉 in R2, is denoted by 〈S′ ⊔ S′′〉 if
none of the ovals of one collection forms an injective pair with the ovals of the other one and they are both non-empty
collections.

Moreover, one can construct, in a way similar to the proof of Proposition 2.4, for every d ≥ 4, bidegree (d, d)
separating real algebraic curves on Q not admitting separating morphism of degree equal to the number of their real
connected components. In fact, variations of Harnack’s construction method and Rokhlin’s complex orientations formula
[Zvo92], [Ore08, Section 1.2] are also available on Q.

Remark 2.7. In general, other real ambient surfaces as the quadric hyperboloid, del Pezzo surfaces, Hirzebruch surfaces
have been previously studied and many real topological tools are developed to investigate applications of Theorem 1.10;
in order to have an idea of these settings see e.g. [DK00], [GS80], [Mik98], [Man22], [Ore03].
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d Real schemes realised by type I curves l(D0, D1)
l−j
2 r(D0, D1) D0 D1

4 〈1〈1〈1〈1〉〉〉〉 0 2 3 (1, 1) −
5 〈1〈1〈1〈1〈1〉〉〉〉〉 0 1 3 (1, 1) (1, 1)
5 〈α ⊔ 1〈β〉 ⊔ 1〈γ〉〉, for all α,β, γ such 0 2 3 (1, 1) (1, 1)

that α = 0 (mod 2) and α+ β + γ = 5
TABLE 1. For each d ≤ 5, this is a complete list of real schemes realised by type I real algebraic
curves of bidegree (d, d), with l ovals, where l satisfies the hypotheses of Corollary 2.5. The symbols
l(D0, D1), r(D0, D1) represent the bounds respectively on the left and on the right for the number
l−j
2 in (1)− (2) of Corollary 2.5, where the index j equals 0 if d is even and 3 otherwise.
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