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ABSTRACT. It is well known that a non-singular real plane projective curve of degree five with five connected components
is separating if and only if its ovals are in non-convex position. In this article, this property is set into a different context and
generalised to all real plane separating (M − 2)-curves.
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1. INTRODUCTION

Let C be any smooth complex compact algebraic curve equipped with an anti-holomorphic involution σ : C → C, i.e.
a smooth real algebraic compact curve. If the real points C(R) of C separates its complex points C(C), i.e. C(C)\C(R)
is disconnected, we say that C is of type I or separating. By Harnack-Klein’s inequality [Har76, Kle73], the number l
of connected components of C(R) is bounded by the genus g of C plus one . For any fixed 0 ≤ i ≤ g + 1, if l equals
g + 1− i, we say that C is an (M − i)-curve. The number l is related to the property of separateness of the curve. For
example, if C is separating, then l has the parity of g + 1. Or, if C is an M -curve, then C is separating. In this article,
we work with non-singular real algebraic plane projective separating (M − 2)-curves.

First of all, let us present some general features of separating curves. If C is of type I, the two halves of C(C) \C(R)
induce two opposite orientations on C(R) called complex orientations; [Rok74]. Looking at complex orientations of
separating real curves embedded in some ambient surface has lead to remarkable progress in the study of their topology
and a refinement of their classifications. One of the first results relating topology, complex orientations and properties
of separating plane curves, is Rokhlin’s complex orientations formula [Rok74], [Mis75], and one of the more recent
is [Ore21, Theorem 1.1], where Orevkov shows that there are finer relations for the numbers which intervene in the
complex orientations formula. An important role in [Ore21] is played by separating morphisms.

Definition 1.1. We say that a real morphism f from a smooth real algebraic compact curve C to the complex projective
line P1

C is separating if f−1(P1(R)) = C(R).

According to Ahlfors [Ahl50, §4.2], there exists a separating morphism f : C → CP1 if and only if C is of type
I. We call separating gonality of C, and we denote it with sepgon(C), the minimal possible value for the degree of
a separating morphism of C. Observe that the separating gonality has always, as lower bound, the number of real
connected components of C(R).

Actually, there is a more general definition of separating morphisms including real morphisms between any real
algebraic varieties of same dimension. We direct the interested reader to [KS20a] and [KTM23]. In the current paper,
we need Definition 1.1, only.

The study of smooth real curves of type I and their separating morphisms has been carried out mainly from two points
of view: on the one hand from that of abstract curves; on the other hand from that of curves embedded in some ambient
surface; e.g. [Hui01], [Gab06],[CH13], [Cop13], [Cop14], [KS20b], [Ore21]. Any real M -curve of genus g admits a
separating morphism of degree g + 1, because of Riemann-Roch theorem. In general, for some fixed integers i, k such
that 1 ≤ i ≤ g+1 and k ≥ g+1− i, given a real separating (M− i)-curve C, it is not evident, a priori, how to construct
a separating morphism f : C → P1

C of degree k.
On the other hand, [Gab06, Theorem 7.1] states that a genus g real separating curve with l real connected components

admits a separating morphism of degree at most g+l+1
2 .
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From now on, unless otherwise stated, we call real plane (separating) curve any real algebraic plane projective
(separating) curve.

The real locus of a non-singular real plane curve is homeomorphic to a disjoint union of circles embedded in P2(R).
One can embed a circle in P2(R) in two different ways: as an oval, i.e. realising the trivial-class in H1(P2(R);Z/2Z),
otherwise as a pseudo-line. A non-singular real plane curve of even degree has a non-negative number ovals only;
otherwise exactly one pseudo-line and ovals (possibly none).

P2(R) is separated by an oval in two disjoint non-homeomorphic connected components: a disk, called interior of
the oval; a Möbius band, called exterior of the oval.

In the study of the topology of real plane curves, the following it is well known.

Lemma 1.2. A non-singular real plane curve C5 of degree 5 with five connected components is separating if and only
if its ovals are in non-convex position (see Definition 1.3).

FIGURE 1. Arrangement of a triplet (P2(R), C(R), S1 ∪S2 ∪S3) as in Definition 1.3, where the Si’s
are the three segments.

Definition 1.3. Let C be a non-singular real plane curve of degree 5 with five connected components. We say that its
ovals are in non-convex position if three of the ovals of C(R) are such that, chosen a point in the interior of each of
them, once one traces three segments containing pair-wisely the points and such that every segment does not cross the
pseudo-line of C(R), the fourth oval is contained inside the triangle cut out by these segments; see Fig. 2.

A possible construction of a real plane separating quintic with five connected components can be found in [Vir, pag.
36, Fig. 19].

Since in the proof of Lemma 1.2 resides the germ of the main theorem of this article, Theorem 1.6, we report it
briefly. To do so, we first recall the following definitions.

Definition 1.4. Let C be a non-singular real algebraic plane projective curve of type I. We say that C admits a totally
real pencil of curves of degree k if there exists an integer k such that there are f, g ∈ R[x, y, z]k and V (λf + µg) ∩ C
consists of real points only for all λ, µ ∈ R not both zero.

Definition 1.5. An oval O of a non-singular real plane curve of odd degree is called positive if [O] = −2[J ] in H1(N),
where J is the pseudo-line of the curve and N the closure of the non-orientable component of P2(R) \O. Otherwise an
oval is called negative.

Proof of Lemma 1.2. Assume that C5 is separating and, for the sake of contradiction, suppose that the ovals are in convex
position. Then, applying [Fie83, Theorem 1], one can show that two ovals must be negative and two positive, which is
in contradiction with the complex orientations formula [Mis75]. Now, assume that the ovals are in non-convex position.
In order to prove that C5 is separating it is enough to prove that C5 admits a totally real pencil; see Definition 1.4. Let
us consider any real pencil of conics with base locus a point for each oval of C5(R). First, remark that every real conic
in the real projective plane is convex (because of Bézout Theorem). Then, the non-convexity respectively of the ovals
of C5(R) and the fact that every conic is convex, forces the pencil to be totally real for the curve C5; indeed, each real
conic of the pencil is obliged to intersect all real connected components of C5. □

A priori, Lemma 1.2 is uniquely an observation concerning separating plane quintics with four ovals. It is not clear
that one may expect to have some generalisation of it to other real plane separating curves. On the other hand, a
remarkable fact, from the proof of Lemma 1.2, is that any non-singular real plane projective separating curve of degree
5 with five connected components admits a totally real pencil of conics. Surprisingly, this property can be generalised to
all real plane separating (M − 2)-curves; see Theorem 1.6. Indeed, the generalisation of Lemma 1.2 to separating plane
(M − 2)-curves Cd of degree d is that every curve Cd admits totally real pencils of curves of degree (d− 3).
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Theorem 1.6. Let C be a non-singular real plane (M − 2)-curve of degree d ≥ 4 and of type I. Let g = (d−1)(d−2)
2

denote the genus of C. Then, the curve C admits infinitely many totally real pencils of degree d− 3 with g − 1 or g − 2
base points.

We prove Theorem 1.6 in Section 2 splitting it in two statements, Propositions 2.1 and 2.3.

Remark 1.7. In [Tou13], there have been constructed totally real pencils of rational cubics for real plane separating
(M − 2)-sextics realising two particular topological arrangements in the real projective plane. On the other hand,
the points of the base locus of such totally real pencils do not belong to the curves, therefore the obtained separating
morphisms of such sextics have degree 18.

Acknowledgements. I would like to thank Erwan Brugallé. I thank also Athene Grant and the DFG, German Research
Foundation (Deutsche Forschungsgemeinschaft), Project- ID 286237555, TRR 195, “Symbolic Tools in Mathematics
and their Application”.

2. PROOFS AND EXAMPLES

Since the separating gonality of a smooth real (M − 2)-curve of genus g and of type I is either g − 1 or g [Gab06,
Theorem 7.1], in order to prove Theorem 1.6, we split it in Proposition 2.1 and 2.3.

Proposition 2.1. Let C be a non-singular real plane (M − 2)-curve of degree d ≥ 4 and of type I. Assume that
sepgon(C) = g − 1, where g = (d−1)(d−2)

2 is the genus of C. Then, the curve C admits infinitely many totally real
pencils of degree d− 3 with g − 1 base points.

To prove Proposition 2.1, we apply [Ore21, Theorem 3.2]. Therefore we report here the statement restricted to the
case of real plane curves.

Theorem 2.2. ([Ore21, Theorem 3.2]) Let C be a non-singular real plane separating curve. Let D be a real divisor
belonging to the linear system |C+KP2

C
|. Assume that D has not C as a component. We may always write D = 2D0+D1

with D1 a reduced curve and D0 an effective divisor. Let us fix a complex orientation on C(R) and an orientation on
P2(R) \ (C(R)∪D1(R)) which changes each time we cross C(R)∪D1(R) at its smooth points. The latter orientation
induces a boundary orientation on C(R) \ (C(R) ∩ D1). Let f : C → CP1 be a separating morphism. Then it is
impossible that, for some p ∈ P1(R), the set f−1(p) \ supp(D) is non-empty and the two orientations coincide at each
point of the set.

Proof of Proposition 2.1. Since sepgon(C) = g − 1, there exists a separating morphism f : C → P1 of degree g − 1.
Therefore for any fixed p ∈ P1(R), every point pi in f−1(p) belongs to a distinct connected component Ci of C(R),
where 1 ≤ i ≤ g − 1.

In the following, we show that any real pencil of curves of degree (d − 3) passing through g − 2 points of f−1(p)
contains indeed the all f−1(p). In particular, this would imply that any such pencil must be totally real for the curve C.

Fixed (d−1)(d−2)
2 − 1 = g − 1 real points, thanks to Riemann-Roch theorem, there always exists at least one real

curve of degree (d − 3) passing through such configuration. Moreover, a configuration of g − 2 points defines a pencil
of curves of degree (d− 3).

For any fixed p ∈ P1(R), pick any configuration P of g − 2 distinct points pj1 , . . . , pjg−2
belonging to f−1(p).

Applying the notation in Theorem 2.2, take D1 as the curve containing P and an additional real point q, different from
pjg−1 . Remark that D1 must be reduced; otherwise D1 can be written as a product of two real curves A2B, where A and
B have degree respectively s and d − 3 − 2s with 1 ≤ s ≤ ⌊d−3

2 ⌋. But, this leads to a contradiction. In fact, because
of the choice of the g − 2 points, the curve C must intersect A ∪ B in at least 2(g − 2) points, which is not possible by
Bézout theorem.

Let us fix an orientation on P2(R) \ (C(R)∪D1(R)) which changes each time we cross C(R)∪D1(R) at its smooth
points. The latter orientation induces a boundary orientation O on C(R) \ (C(R) ∩D1).

Suppose, for the sake of contradiction, that pjg−1 does not belong to D1. Then, the set f−1(p)\supp(D1) = {pjg−1}
is non-empty and, up to fix one of the two complex orientations on C(R), such complex orientation and the orientation
O coincide at pjg−1 . This implies that the separating morphism f : C → P1 cannot exist and it contradicts [Gab06,
Theorem 7.1].

Therefore, any real curve of degree (d− 3) passing through P is obliged to contain also the point pjg−1 . In particular,
the configuration P defines a totally real pencil of curves of degree (d− 3).

Moreover, such totally real pencil has exactly g − 1 base points on C. Indeed Bp ∩ C = f−1(p), where Bp denotes
the base locus of the pencil. The fact that Bp ∩ C contains f−1(p) comes from the construction and the equality must
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hold as well; otherwise there would exist at least another real point r (respectively two complex conjugated points s, s)
belonging to (Bp ∩ C) \ f−1(p), and such r would belong to some connected component Ch and the intersection
of C with a real curve A of the pencil passing through another real point q ∈ Ch \ {r, ph} would be of at least
4 + 2(g − 2) = 2g = d(d − 3) + 2 points (respectively the intersection of C with a real curve A of the pencil passing
through another point q would be of at least 2+2(g−1) = 2g = d(d−3)+2 points). A contradiction with the theorem
of Bézout. □
Proposition 2.3. Let C be a non-singular real plane (M − 2)-curve of degree d ≥ 4. Assume that sepgon(C) = g,
where g = g(C) = (d−1)(d−2)

2 is the genus of C. Then, the curve C admits infinitely many totally real pencils of degree
d− 3 with g − 2 base points.

To prove Proposition 2.3, we need to recall the definition of (M − 2)-curves of special type and Theorem 4.4 stated
in [Cop14].

Definition 2.4. ([Cop14, Definition 2.2]) A real separating (M − 2)-curve C of genus g is of special type if there exists
a connected component C̃ of C(R) such that for each real morphism f : C → P1 of degree g having odd parity on each
connected component Cj ∕= C̃ of C(R), one has f(C̃) = P1(R).
Theorem 2.5. ([Cop14, Theorem 4.4]) Let C be a real separating (M − 2)-curve of genus g not of special type, then
sepgon(C) = g − 1.

Proof of Proposition 2.3. Since sepgon(C) = g, there exists a separating morphism f : C → P1 of degree g. Therefore
for any fixed p ∈ P1(R), the points p1, . . . , pg−2 of f−1(p) belongs to distinct connected components Ci’s of C(R),
where 1 ≤ i ≤ g − 2, and the remaining points pg−1, pg belongs to the same connected component Cg−1.

First of all remark that, thanks to Theorem 2.2, for any fixed p ∈ P1(R), any real curve of degree (d − 3) passing
through g − 1 points pj1 , . . . , pjg−1 of f−1(p) is obliged to contain also pjg ; see the proof of Proposition 2.1.

On the other hand, thanks to Theorem 2.5, the fact that sepgon(C) ∕= g − 1, implies that C is of special type (see
Definition 2.4). Now, there are two possibilities: either C̃ = Ci for some i ∕= g − 1 or C̃ = Cg−1. Since f is a real
morphism of degree g having odd parity on C1, . . . , Cg−2, it can only be that C̃ = Cg−1. Let s : C → P1 be the real
morphism associated to the pencil of curves of degree (d − 3) passing through the points p1, . . . , pg−2. Since C is of
special type and the degree of s|Ci

is odd, for all i ∕= g − 1, it follows that s(Cg−1) = P1(R) and, by construction,
the morphism s must be separating and the pencil totally real for the curve C. Moreover, the base locus of such pencil
contains exactly g − 2 points on C.

□
Let us consider a non-singular real plane separating curve C5 of degree 5 with five connected components. As proved

in [Man23, Example 2.2], applying Theorem 2.2, one can show that C5 cannot have separating gonality equal to 5.
Therefore sepgon(C5) = 6. Moreover, applying Theorem 2.2 once again we observe the following.

Example 2.6. Let us prove that all separating morphisms of degree 6 of C5 must have odd degree on the three negative
ovals and degree two either on the pseudo-line or on the positive oval; see Definition 1.5. For the sake of contradiction,

FIGURE 2. (P2(R), C(R), L(R)) of Example 2.6. Double arrows denote O, simple arrows the fixed
complex orientation of C(R) and • the points in f−1(p).

let us suppose that there exists a separating morphism f : C → P1
C of degree 6 such that f has degree 2 when restricted to

a negative oval ofC(R). Then, fix some p ∈ P1(R) and apply Theorem 2.2 taking as D0 the line passing through the two
points of f−1(p) belonging to the positive oval and the pseudo-line. Up to a choice of the orientation O (double arrows
in Fig. 2), we get a contradiction with Theorem 2.2 and therefore such f cannot exist. On the other hand sepgon(C) = 6.
This means that all separating morphisms of C must have odd degree on the three negative ovals.
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Remark 2.7. For real plane quintics as in Example 2.6, one of the two bounds of [Ore21, Theorem 1.1] is sharp. More
in general, any real separating plane (M − 2)-curve of genus g, for which one of the two bounds in [Ore21, Theorem
1.1] is sharp, must have separating gonality equal to g (in fact, one can apply the same argument of Example 2.6).

Question 2.8.
• For any integer k ≥ 2, is there a non-singular real plane separating (M − 2)-curves of degree 4k + 1 for which

the bound on the left of (2) in [Ore21, Theorem 1.1] is sharp?
Observe that, because of [Ore21, Remark 1.8], for all k ≥ 1, such bounds can never be sharp for real

separating plane (M − 2)-curves of degree 4k+3. Moreover, for any real plane separating curve of odd degree
the bound on the right of (2) in [Ore21, Theorem 1.1] can never be sharp.

• There exist two real plane (M − 2)-curves of degree d which have the same arrangement in the real projective
plane, up to homeomorphism of P2(R), but with different separating gonality?

In [KS20b], the separating morphisms of real separating curves are studied as follows. Let a smooth real separating
algebraic compact curve C consist of l real connected components C1, . . . , Cl. Let f : C → P1

C be any separating
morphism of C. Set di(f) ∈ N the degree of the covering map f |Ci : Ci → P1(R) and set d(f) := (d1(f), . . . , dl(f)).
The set Sep(C) of all such degree partitions forms a semigroup, called separating semigroup.

Here, we report a remark on the separating semigroup of real separating (M − 2)-curves.

Lemma 2.9. Let C be a smooth real compact separating (M−2)-curve of genus g. Then Sep(C) ⊇ (4, 3, . . . , 3)+Ng−1.
Moreover

(1) Sep(C) ⊇ (3, . . . , 3) + Ng−1, if sepgon(C) = g − 1.
(2) Sep(C) ⊇ (4, 2, . . . , 2) + Ng−1, if sepgon(C) = g.

Proof. First, thanks to [Hui03, Theorem 2.5], one has that any real divisor D on C such that deg(D) + k ≥ 2g − 1, is
non-special, where k is the number of connected components of C(R) such that the degree of D restricted to each of
those is odd.

There exists a real divisor D̃ on C associated to a separating morphism f : C → P1 with deg(f) = sepgon(C),
which is either g or g − 1 [Gab06, Theorem 7.1].

If deg(f) = g − 1, it means that (1, . . . , 1) ∈ Sep(C). Moreover, since Sep(C) is a semigroup [KS20b, Proposition
2.1], there exists a separating morphism f̃ of C of degree 3g − 3 with partition degree (3, . . . , 3). Therefore, the
associated divisor D̃ is non-special and, by [KS20b, Proposition 3.2 and Remark 3.3], the separating semigroup of C
contains (3, . . . , 3) + Ng−1.

Otherwise, if deg(f) = g, it means that (2, 1, . . . , 1) ∈ Sep(C) and, analogously, there exists a separating morphism
f̃ of C of degree 2g with partition degree (4, 2, . . . , 2). Therefore, the associated divisor D̃ is non-special, and the
separating semigroup of C contains (4, 2, . . . , 2) + Ng−1.

□

Remark 2.10. In [KS20b, Example 2.8], it is observed, via an example, that the separating semigroup of real separating
curves is not symmetric in general. Here we give another example. Pick a real plane separating quintic C with five
connected components. A linear system of rank 2 on a curve of genus bigger equal to 3 is unique; [EA85, A.18].
So, one can label the pseudo-line, the positive oval and the negative ones of C(R) respectively as X1, . . . , X5. The
element (2, 1, 1, 1, 1) has been constructed in proof of Lemma 1.2. But, because of Example 2.6, not all permutations of
(2, 1, 1, 1, 1) belong to Sep(C). In fact, only (1, 2, 1, 1, 1) may also exist.

Remark 2.11. The interested reader can investigate, analogously to the case of plane curves, further constructions and
applications of Theorems 2.2 and 2.5 to real curves embedded in other ambient surfaces; see e.g. [DK00], [GS80],
[Mik98], [Man21], [Man22], [Ore03].
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