Riemann surfaces and algebraic curves, Exercise sheets 1-13

1 Exercise sheet 1

(Exercise 1) (ex. 2.4.4 [1]) Let K be a Klein bottle and T be a torus. Show that

$$
K=\mathbb{P}^{2}(\mathbb{R}) \# \mathbb{P}^{2}(\mathbb{R}) \text { and } T \# \mathbb{P}^{2}(\mathbb{R})=\mathbb{P}^{2}(\mathbb{R}) \# \mathbb{P}^{2}(\mathbb{R}) \# \mathbb{P}^{2}(\mathbb{R})
$$

Remember that K has identification polygon $a b a^{-1} b$.
(Exercise 2) (ex. 2.4.6 [1]) Let S be a compact, connected surface, represented by an identification polygon w. Show that the boundary of the polygon w is a good graph.
(Exercise 3) (ex. 2.4.7 [1]) Let S_{1} and S_{2} be compact, connected surfaces. Show that

$$
\chi\left(S_{1} \# S_{2}\right)=\chi\left(S_{1}\right)+\chi\left(S_{2}\right)-2
$$

where $\chi(*)$ denotes the Euler characteristic.
(Exercise 4) (ex. 2.4.8 [1]) Show that $\chi\left(T^{\# g}\right)=2-2 g$ and $\chi\left(\mathbb{P}^{2}(\mathbb{R})^{\# m}\right)=2-m$.
(Exercise 5) (Euler's identity)
(i) Let $P\left(x_{0}, x_{1}, x_{2}\right)$ be a homogeneous polynomial of degree d in variables x_{0}, x_{1}, x_{2}. Show that

$$
\sum_{i=0}^{2} x_{i} \frac{\partial P\left(x_{0}, x_{1}, x_{2}\right)}{\partial x_{i}}=d P\left(x_{0}, x_{1}, x_{2}\right)
$$

(ii) Write $P\left(x_{0}, x_{1}, x_{2}\right)$ with respect to its second partial derivatives $\partial_{x_{i} x_{j}} P:=$ $\frac{\partial \frac{\partial P\left(x_{0}, x_{1}, x_{2}\right)}{\partial x_{i}}}{\partial x_{j}}$.

2 Exercise sheet 2

Guided exercises about blow-ups. Blow-ups can be used, for example, to desingularise real plane curves. Let C be an algebraic plane curve in $\mathbb{P}_{\mathbb{C}}^{2}$. The aim of this Exercise sheet is to find a compact Riemann surface X and a map $f: X \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ inducing an isomorphism between $X \backslash f^{-1}\left(C_{\text {sing }}\right)$ and $C \backslash\left(C_{\text {sing }}\right)$, where $C_{\text {sing }}$ denotes the singular point set of C.
(Exercise 1) Let's start with a local construction. Let U be a neighbourhood of a point $p=(0,0) \in \mathbb{C}^{2}$ and denote with z, w the coordinates of the affine plane \mathbb{C}^{2}. We want to define the blow-up of U at p. Take

$$
\tilde{U}=\left\{((z, w),[\xi, \eta]) \in U \times \mathbb{P}_{\mathbb{C}}^{1} \mid z \eta=w \xi\right\}
$$

(i) Let us show that \tilde{U} is a dimension 2 complex variety.

Clearly \tilde{U} is a closed set of $U \times \mathbb{P}_{\mathbb{C}}^{1}$. Put on \tilde{U} the induced topology. One can cover \tilde{U} with two open sets

$$
\tilde{U}=\tilde{U}_{0} \cup \tilde{U}_{1}
$$

where

$$
\begin{aligned}
& \tilde{U}_{0}=\{((z, w),[\xi, \eta]) \in \tilde{U} \mid \eta \neq 0\} \cong \mathbb{C}^{2} \\
& \tilde{U}_{0}=\{((z, w),[\xi, \eta]) \in \tilde{U} \mid \xi \neq 0\} \cong \mathbb{C}^{2}
\end{aligned}
$$

Let $\pi: \tilde{U} \rightarrow U$ be the projection sending $((z, w),[\xi, \eta])$ to (z, w).

- Write the coordinates of \tilde{U}_{0} and \tilde{U}_{1} and express $\pi_{\tilde{U}_{i}}$ for $i=0,1$.
- Does it follow from the previous points dealt with in (i) that $\left(\tilde{U}_{i}, \pi_{\left.\right|_{\tilde{U}_{i}}}\right)_{i=0,1}$ form an atlas for \tilde{U} ? If not, find an atlas $\left(\tilde{U}_{i}, \tilde{\phi}_{i}\right)_{i=0,1}$.
(ii) Now let us understand \tilde{U}.
- Show that \tilde{U} contains a copy E of $\mathbb{P}_{\mathbb{C}}^{1}$.

Let L be a line in U of equation $a z+b w=0$ and consider the strict transform \tilde{L} of L which is defined as follows:

$$
\tilde{L}=\overline{\pi^{-1}(L \backslash\{p\})}
$$

- Show that $\tilde{L}=\{((z, w),[b,-a])\}$.
- Show that $\pi^{-1}(L)=\tilde{L} \cup E$ and describe the set of points of $\tilde{L} \cap E$.

From the previous points dealt with in (ii), it follows that the map $L \mapsto$ $\tilde{L} \cap E$ gives a bijection between points of E and lines through the origin of \mathbb{C}^{2}.

(Exercise 2) Let us consider the case in which $U=\mathbb{C}^{2}$. Let C be an algebraic curve of equation $z w+p(z, w)=0$, where $p(z, w)$ is a linear combination of monomials of degree at least 3 . Assume that the only singularity of C is at $p=(0,0)$. Let us consider the strict transform

$$
X=\overline{\pi^{-1}(C \backslash\{p\})}
$$

- Write $X \cap \tilde{U}_{i}$ for $i=0,1$ and the intersection points of $X \cap E=\pi^{-1}(p)$.
- Is X is a complex subvariety of \tilde{U} ?
- Explain why $\pi: X \backslash \pi^{-1}(p) \rightarrow C \backslash\{p\}$ is an isomorphism.
X is the desingularization of C, i.e. X has no more singularities.
(Exercise 3) Let us consider the cuspidal cubic C in \mathbb{C}^{2} with equation $w^{2}+z^{3}=0$. Show that C is desingularised blowing-up \mathbb{C}^{2} at the origin, i.e. the strict transform of C via π has no more singularities. Is the curve of equation $w^{2}+z^{5}=0$ in \mathbb{C}^{2} desingularised after blowing-up the origin? Explain your answer.

3 Exercise sheet 3

(Exercise 1) Let $C=\left\{[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2}: F(x, y, z)=x^{d}+y^{d}+z^{d}=0\right\}$ be a plane curve in $\mathbb{P}_{\mathbb{C}}^{2}$ (as in Exercise session 1). Take the projection map $\pi: C \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ sending $[x: y: z]$ to $[x: y]$.

- Is π an holomorphic map?
- Find all ramification and branch points of π.
- Compute the genus of C using Riemann-Hurwitz formula.
(Exercise 2) Consider $f: E \rightarrow \mathbb{P}^{1}(\mathbb{C})$, with $g_{E}=2$. Assume that there are two points $x_{1}, x_{2} \in E$ where f is fully ramified. How many ramification points can f have, and what ramification is possible?
(Exercise 3) Let $f: X \rightarrow Y$ be a holomorphic map of compact Riemann surfaces of degree $d>0$ and let $y \in Y$ with $f^{-1}(y)=\left\{x_{1}, \ldots, x_{n}\right\}$. Show that

$$
\sum_{i=1}^{n} k_{x_{i}}=d
$$

Hint: generalise Theorem 1.4.9 on the notes.
Remark: Given a point x in X, the ramification index k_{x} is well defined. Namely, if f has two local expressions around x of the form $F(z)=z^{k}$ and $\tilde{F}(z)=z^{\tilde{k}}$, then $k=\tilde{k}$.

4 Exercise sheet 4

(Exercise 1) Let n be a postitive integer. Let C_{0} be an affine curve

$$
\left\{(x, y) \in \mathbb{C}^{2} \mid y^{n-1}=x^{n}-1\right\}
$$

and let $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ be the projective closure of C_{0}.

- Show that C is non-singular.
- Compute the genus of C applying Riemann-Hurwitz's formula to the function x.
- Compute the genus of C applying Riemann-Hurwitz's formula to the function y.
(Exercise 2) Let L be a lattice in \mathbb{C}. Let $m \in \mathbb{C}_{\neq 0}$. Show that $m L$ is a lattice in \mathbb{C} and that

$$
\phi: \mathbb{C} / L \rightarrow \mathbb{C} / m L
$$

sending $[z]$ to $[m z]$ is a well defined biholomorphic map.

5 Exercise sheet 5

Let $\Lambda=\mathbb{Z} \tau_{1}+\mathbb{Z} \tau_{2}$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp-function for the lattice Λ. Show that
(Exercise 1) \wp^{\prime} has degree 3, and it has three distinct simple zeros in $\mathcal{D}=\left\{s \tau_{1}+t \tau_{2}: 0 \leq\right.$ $s, t<1\}$ and those are $\frac{\tau_{1}}{2}, \frac{\tau_{2}}{2}, \frac{\tau_{3}}{2}$, where $\tau_{1}+\tau_{2}=\tau_{3}$.
(Exercise 2) the function $z \mapsto \wp(z)-c$ for each choice of $c \in \mathbb{C}$ has a double zero in $z_{0} \in \mathcal{D}$ if and only if $c \in\left\{u_{1}, u_{2}, u_{3}\right\}$ where $u_{i}=\wp\left(\frac{\tau_{i}}{2}\right)$. Moreover the u_{i} are three distinct complex numbers.

6 Exercise sheet 6

Let $\Lambda=\mathbb{Z} \tau_{1}+\mathbb{Z} \tau_{2}$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp-function for the lattice Λ. Let $g_{2}, g_{3} \in \mathbb{C}$ such that $\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}$.
(Exercise 1) Show that the subset

$$
C=\left\{[x: y: h: t] \in \mathbb{P}_{\mathbb{C}}^{3}: y^{2}=4 x t-g_{2} x h-g_{3} h^{2}, x^{2}=h t\right\}
$$

is a submanifold of $\mathbb{P}_{\mathbb{C}}^{3}$.
Hint: Implicit Function Theorem.
(Exercise 2) Show that the map

$$
\mathbb{C} / \Lambda:=T \rightarrow \mathbb{P}_{\mathbb{C}}^{3}
$$

sending $z \mapsto\left[\wp(z): \wp^{\prime}(z): 1: \wp^{2}(z)\right]$ for $z \neq 0$ and $0 \mapsto[0: 0: 0: 1]$ is a holomorphic map.

$7 \quad$ Exercise sheet 7

Let $\Lambda=\mathbb{Z} \tau_{1}+\mathbb{Z} \tau_{2}$ be a lattice in \mathbb{C}.
(1) Describe the 3 -torsion points of \mathbb{C} / Λ.
(2) How many are they?
(3) Let ϕ be the Weierstrass embedding with respect to Λ. Let E be $\phi(\mathbb{C} / \Lambda)$ and $P \in E$. Show that if $3 P=0$ then the Hessian polynomial of E vanishes at P, where the Hessian polynomial of E is the determinant of the Hessian matrix of E.
(4) Show that the 3-torsion points of \mathbb{C} / Λ correspond to 3 -tangents of E, where a 3 -tangent of E is a line intersecting E in only one point.

8 Exercise sheet 8

(Exercise 1) Let Λ be a lattice generated by 1 and τ. Let $\xi=a \tau+b$ and $\lambda=p \tau+q$ where $a, b, p, q \in \mathbb{Z}$ (same hypothesis of Theorem 3.3.12/proof of Theorem 3.3.12 in the notes). Show that $\Theta_{\xi}(z+\lambda)=e_{\xi}(\lambda, z) \Theta_{\xi}(z)$ explicitly computing $e_{\xi}(\lambda, z)$.
(Exercise 2) Let $C:=\left\{[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2}: F(x, y, z)=0\right\}$, where $F(x, y, z)$ is a non singular polynomial of degree d, i.e. $(F, \partial F / \partial x, \partial F / \partial y, \partial F / \partial z) \neq(0,0,0,0)$. Let $\phi(x, y, z)$ be a homogenous non-singular polynomial of degree $d-3$. Set

$$
\omega=\frac{\phi(x, y, z) z^{2}}{\frac{\partial F}{\partial y}} d\left(\frac{x}{z}\right)
$$

Study the differential ω in $C \cap\{z \neq 0\}$ and determine whether ω is holomorphic in $C \cap\{z \neq 0\}$.

$9 \quad$ Exercise sheet 9

(Exercise 1) Let $C:=\left\{[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2}: F(x, y, z)=0\right\}$, where $F(x, y, z)$ is a non singular polynomial of degree 4, i.e. $(F, \partial F / \partial x, \partial F / \partial y, \partial F / \partial z) \neq(0,0,0,0)$. Let r be a line in $\mathbb{P}_{\mathbb{C}}^{2}$ given by the equation $L(x, y, z)=0$. Define a divisor D on C as the intersection of r with C.

- Show that $\operatorname{deg}(D)=4$.
- Show that any other divisor $D^{\prime} \in|D|$ is of the form $D^{\prime}=r^{\prime}$. C, for some line r^{\prime} in $\mathbb{P}_{\mathbb{C}}^{2}$ of equation $L^{\prime}(x, y, z)=0$.
(Exercise 2) Let $C:=\left\{[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2}: F(x, y, z)=0\right\}$, where $F(x, y, z)$ is a non singular polynomial of degree d. Let $\Gamma=\left\{[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2}: G(x, y, z)=0\right\}$ be a degree $(d-3)$ non singular curve. Define the intersection divisor of Γ and C as follows:

$$
\Gamma . C=\sum_{p \in C} I(p, \Gamma \cap C) p
$$

where $I(p, \Gamma \cap C)=\operatorname{ord}_{p}\left(\frac{G}{H}\right)$ with H a homogeneous polynomial of degree $(d-3)$ non vanishing at p. Remark that $\left.\frac{G}{H}\right|_{C}$ is a meromorphic function on C.

- Show that if $p \notin C \cap \Gamma$, then $I(p, \Gamma \cap C)=0$.
- Show that the definition of $I(p, \Gamma \cap C)$ (namely the definition of $\Gamma . C$) does not depend on the choice of H.

10 Exercise sheet 10

From Exercise Sessions 3, 6, 8:

(Exercise 1) Let us consider the curve

$$
\Gamma=\left\{[x: y: z] \in \mathbb{P}_{\mathbb{C}}^{2} \mid x y z^{3}+x^{5}+y^{5}=0\right\}
$$

Let $\sigma: C \rightarrow \Gamma$ be the desingularisation of Γ. Let $p=[0: 0: 1]$.

- Show that $\sigma^{-1}(p)$ consists of two points $\sigma^{-1}(p)=\left\{p_{1}, p_{2}\right\}$.
- Let $f=x \circ \sigma$ and $h=y \circ \sigma$. Describe zeros, poles, ramification order, ect... of f, h and f / h.
(Exercise 2) Let $\Lambda=\mathbb{Z} \tau_{1}+\mathbb{Z} \tau_{2}$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp-function for the lattice Λ.
Let $g_{2}, g_{3} \in \mathbb{C}$ such that $\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}$. The subset

$$
C=\left\{[x: y: h: t] \in \mathbb{P}_{\mathbb{C}}^{3}: y^{2}=4 x t-g_{2} x h-g_{3} h^{2}, x^{2}=h t\right\}
$$

is a submanifold of $\mathbb{P}_{\mathbb{C}}^{3}$.
The map

$$
\mathbb{C} / \Lambda:=T \rightarrow \mathbb{P}_{\mathbb{C}}^{3}
$$

sending $z \mapsto\left[\wp(z): \wp^{\prime}(z): 1: \wp^{2}(z)\right]$ for $z \neq 0$ and $0 \mapsto[0: 0: 0: 1]$ is a holomorphic map. Moreover $\phi(T)=C$.

- Show that the map ϕ is injective and has maximal rank 1 on T.
(Exercise 3) Let D be a divisor on a complex torus $X:=\mathbb{C} / \Lambda$ with $\operatorname{deg}(D)>0$. Then $\operatorname{dim}(\mathcal{L}(D))=\operatorname{deg}(D)$.

11 Exercise sheet 11

The following are exercises A and E from [2]: Algebraic curves and Riemann surfaces, Problems VI.2.
(Exercise 1) Given a meromorphic function f, and a divisor D, show that the multiplication operator

$$
\mu_{f}^{D}: \mathcal{T}[D](X) \rightarrow \mathcal{T}[D-\operatorname{div}(f)](X)
$$

defined by sending $\sum r_{p} \cdot p$ to the suitable truncation of $\sum\left(f r_{p}\right) \cdot p$ is an isomorphism. Show that the inverse is $\mu_{1 / f}^{D-\operatorname{div}(f)}$.
(Exercise 2) Let X be the Riemann sphere. Show that $H^{1}(0)=0$ by explicitly finding a preimage under α_{0} for any Laurent tail divisor Z in $\mathcal{T}[0](X)$. (Hint: use partial fractions).

12 Exercise sheet 12

Let D denote a divisor on an algebraic curve X of genus g.
(Exercise 1) [2, Problems VI. 3 B.] Show that if D is a positive divisor of degree at least $g+1$, then there is a non-constant function in $\mathcal{L}(D)$.
(Exercise 2) Show that if $\operatorname{dim} \mathcal{L}(D) \neq 0$, then $\operatorname{deg}(D) \geq 0$. Moreover show that if $\operatorname{dim} \mathcal{L}(D) \neq$ 0 and $\operatorname{deg}(D)=0$, then $D \sim 0$.
(Exercise 3) [2, Problems VI. 3 C.] Let $\operatorname{deg}(D)$ equal $2 g-2$ and $\operatorname{dim} \mathcal{L}(D)=g$. Show that D is a canonical divisor.

13 Exercise sheet 13

The following are exercise H and I of Problems VI.2 in [2].
(Exercise 1) Let X be a complex torus, and let p be the zero of the group law on X. Let z be a local cordinate on X at p, and consider the Laurent tail divisor $Z=z^{-1} p$; note that $Z \in \mathcal{T}[0](X)$. Show that Z is not in the image of α_{0}, and conclude that $H^{1}(0) \neq 0$ for a complex torus.
(Exercise 2) Prove that $H^{1}(0) \neq 0$ for a complex torus X via Riemann-Roch theorem.
(Exercise 3) Let X be a complex torus. Fix a finite number of points p_{i} on X, with local coordinate z_{i} at p_{i}. Consider the Laurent tail divisor $Z=\sum_{i} c_{i} z_{i}^{-1} p_{i}$. Note that it is in $\mathcal{T}[0](X)$. Show that $Z=\alpha_{0}(f)$ for some global meromorphic function f on X iff $\sum_{i} c_{i}=0$. Prove the above with and without the help of Riemann-Roch theorem.

References

[1] R. Cavalieri and E. Miles. "Riemann Surfaces and Algebraic Curves: A First Course in Hurwitz Theory". In: Cambridge University Press (2016).
[2] R. Miranda. Algebraic Curves and Riemann Surfaces. American Mathematical Society, 1995.

