Riemann surfaces and algebraic curves, Exercise sheets 1-13

1 Exercise sheet 1

(Exercise 1) (ex. 2.4.4 [1]) Let K be a Klein bottle and T be a torus. Show that

 $K = \mathbb{P}^2(\mathbb{R}) \# \mathbb{P}^2(\mathbb{R})$ and $T \# \mathbb{P}^2(\mathbb{R}) = \mathbb{P}^2(\mathbb{R}) \# \mathbb{P}^2(\mathbb{R}) \# \mathbb{P}^2(\mathbb{R}).$

Remember that K has identification polygon $aba^{-1}b$.

- (Exercise 2) (ex. 2.4.6 [1]) Let S be a compact, connected surface, represented by an identification polygon w. Show that the boundary of the polygon w is a good graph.
- (Exercise 3) (ex. 2.4.7 [1]) Let S_1 and S_2 be compact, connected surfaces. Show that

$$\chi(S_1 \# S_2) = \chi(S_1) + \chi(S_2) - 2,$$

where $\chi(*)$ denotes the Euler characteristic.

- (Exercise 4) (ex. 2.4.8 [1]) Show that $\chi(T^{\#g}) = 2 2g$ and $\chi(\mathbb{P}^2(\mathbb{R})^{\#m}) = 2 m$.
- (Exercise 5) (Euler's identity)
 - (i) Let $P(x_0, x_1, x_2)$ be a homogeneous polynomial of degree d in variables x_0, x_1, x_2 . Show that

$$\sum_{i=0}^{2} x_i \frac{\partial P(x_0, x_1, x_2)}{\partial x_i} = dP(x_0, x_1, x_2).$$

(ii) Write $P(x_0, x_1, x_2)$ with respect to its second partial derivatives $\partial_{x_i x_j} P := \frac{\partial \frac{\partial P(x_0, x_1, x_2)}{\partial x_i}}{\partial x_j}$.

Guided exercises about blow-ups. Blow-ups can be used, for example, to desingularise real plane curves. Let C be an algebraic plane curve in $\mathbb{P}^2_{\mathbb{C}}$. The aim of this Exercise sheet is to find a compact Riemann surface X and a map $f : X \to \mathbb{P}^2_{\mathbb{C}}$ inducing an isomorphism between $X \setminus f^{-1}(C_{sing})$ and $C \setminus (C_{sing})$, where C_{sing} denotes the singular point set of C.

(Exercise 1) Let's start with a local construction. Let U be a neighbourhood of a point $p = (0,0) \in \mathbb{C}^2$ and denote with z, w the coordinates of the affine plane \mathbb{C}^2 . We want to define the *blow-up of* U *at* p. Take

$$\tilde{U} = \{ ((z, w), [\xi, \eta]) \in U \times \mathbb{P}^1_{\mathbb{C}} | z\eta = w\xi \}.$$

(i) Let us show that \tilde{U} is a dimension 2 complex variety. Clearly \tilde{U} is a closed set of $U \times \mathbb{P}^1_{\mathbb{C}}$. Put on \tilde{U} the induced topology. One can cover \tilde{U} with two open sets

$$\tilde{U} = \tilde{U}_0 \cup \tilde{U}_1$$

where

$$U_0 = \{((z,w), [\xi,\eta]) \in U | \eta \neq 0\} \cong \mathbb{C}^2,$$
$$\tilde{U}_0 = \{((z,w), [\xi,\eta]) \in \tilde{U} | \xi \neq 0\} \cong \mathbb{C}^2.$$

Let $\pi: \tilde{U} \to U$ be the projection sending $((z, w), [\xi, \eta])$ to (z, w).

- Write the coordinates of \tilde{U}_0 and \tilde{U}_1 and express $\pi_{|_{\tilde{U}_i}}$ for i = 0, 1.
- Does it follow from the previous points dealt with in (i) that $(\tilde{U}_i, \pi_{|_{\tilde{U}_i}})_{i=0,1}$ form an atlas for \tilde{U} ? If not, find an atlas $(\tilde{U}_i, \tilde{\phi}_i)_{i=0,1}$.
- (ii) Now let us understand \tilde{U} .
 - Show that \tilde{U} contains a copy E of $\mathbb{P}^1_{\mathbb{C}}$.

Let L be a line in U of equation az + bw = 0 and consider the *strict* transform \tilde{L} of L which is defined as follows:

$$\tilde{L} = \overline{\pi^{-1}(L \setminus \{p\})}.$$

- Show that $\tilde{L} = \{((z, w), [b, -a])\}.$
- Show that $\pi^{-1}(L) = \tilde{L} \cup E$ and describe the set of points of $\tilde{L} \cap E$.

From the previous points dealt with in (*ii*), it follows that the map $L \mapsto \tilde{L} \cap E$ gives a bijection between points of E and lines through the origin of \mathbb{C}^2 .

(Exercise 2) Let us consider the case in which $U = \mathbb{C}^2$. Let C be an algebraic curve of equation zw + p(z, w) = 0, where p(z, w) is a linear combination of monomials of degree at least 3. Assume that the only singularity of C is at p = (0, 0). Let us consider the strict transform

$$X = \overline{\pi^{-1}(C \setminus \{p\})}.$$

- Write $X \cap \tilde{U}_i$ for i = 0, 1 and the intersection points of $X \cap E = \pi^{-1}(p)$.
- Is X is a complex subvariety of \tilde{U} ?
- Explain why $\pi: X \setminus \pi^{-1}(p) \to C \setminus \{p\}$ is an isomorphism.

X is the desingularization of C, i.e. X has no more singularities.

(Exercise 3) Let us consider the *cuspidal* cubic C in \mathbb{C}^2 with equation $w^2 + z^3 = 0$. Show that C is desingularised blowing-up \mathbb{C}^2 at the origin, i.e. the strict transform of C via π has no more singularities. Is the curve of equation $w^2 + z^5 = 0$ in \mathbb{C}^2 desingularised after blowing-up the origin? Explain your answer.

- (Exercise 1) Let $C = \{ [x : y : z] \in \mathbb{P}^2_{\mathbb{C}} : F(x, y, z) = x^d + y^d + z^d = 0 \}$ be a plane curve in $\mathbb{P}^2_{\mathbb{C}}$ (as in *Exercise session 1*). Take the projection map $\pi : C \to \mathbb{P}^1_{\mathbb{C}}$ sending [x : y : z] to [x : y].
 - Is π an holomorphic map?
 - Find all ramification and branch points of π .
 - Compute the genus of C using Riemann-Hurwitz formula.
- (Exercise 2) Consider $f : E \to \mathbb{P}^1(\mathbb{C})$, with $g_E = 2$. Assume that there are two points $x_1, x_2 \in E$ where f is fully ramified. How many ramification points can f have, and what ramification is possible?
- (Exercise 3) Let $f: X \to Y$ be a holomorphic map of compact Riemann surfaces of degree d > 0 and let $y \in Y$ with $f^{-1}(y) = \{x_1, \ldots, x_n\}$. Show that

$$\sum_{i=1}^{n} k_{x_i} = d.$$

Hint: generalise Theorem 1.4.9 on the notes. **Remark**: Given a point x in X, the ramification index k_x is well defined. Namely, if f has two local expressions around x of the form $F(z) = z^k$ and $\tilde{F}(z) = z^{\tilde{k}}$, then $k = \tilde{k}$.

4 Exercise sheet 4

(Exercise 1) Let n be a postitive integer. Let C_0 be an affine curve

$$\{(x,y) \in \mathbb{C}^2 | y^{n-1} = x^n - 1 \}$$

and let $C \subset \mathbb{P}^2_{\mathbb{C}}$ be the projective closure of C_0 .

- Show that C is non-singular.
- Compute the genus of C applying Riemann-Hurwitz's formula to the function x.
- Compute the genus of C applying Riemann-Hurwitz's formula to the function y.

(Exercise 2) Let L be a lattice in \mathbb{C} . Let $m \in \mathbb{C}_{\neq 0}$. Show that mL is a lattice in \mathbb{C} and that

$$\phi: \mathbb{C}/L \to \mathbb{C}/mL$$

sending [z] to [mz] is a well defined biholomorphic map.

5 Exercise sheet 5

Let $\Lambda = \mathbb{Z}\tau_1 + \mathbb{Z}\tau_2$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp -function for the lattice Λ . Show that

- (Exercise 1) \wp' has degree 3, and it has three distinct simple zeros in $\mathcal{D} = \{s\tau_1 + t\tau_2 : 0 \le s, t < 1\}$ and those are $\frac{\tau_1}{2}, \frac{\tau_2}{2}, \frac{\tau_3}{2}$, where $\tau_1 + \tau_2 = \tau_3$.
- (Exercise 2) the function $z \mapsto \wp(z) c$ for each choice of $c \in \mathbb{C}$ has a double zero in $z_0 \in \mathcal{D}$ if and only if $c \in \{u_1, u_2, u_3\}$ where $u_i = \wp(\frac{\tau_i}{2})$. Moreover the u_i are three distinct complex numbers.

Let $\Lambda = \mathbb{Z}\tau_1 + \mathbb{Z}\tau_2$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp -function for the lattice Λ . Let $g_2, g_3 \in \mathbb{C}$ such that $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$.

(Exercise 1) Show that the subset

$$C = \{ [x:y:h:t] \in \mathbb{P}^3_{\mathbb{C}} : y^2 = 4xt - g_2xh - g_3h^2, x^2 = ht \},\$$

is a submanifold of $\mathbb{P}^3_{\mathbb{C}}$. Hint: Implicit Function Theorem.

(Exercise 2) Show that the map

$$\mathbb{C}/\Lambda := T \to \mathbb{P}^3_{\mathbb{C}}$$

sending $z \mapsto [\wp(z) : \wp'(z) : 1 : \wp^2(z)]$ for $z \neq 0$ and $0 \mapsto [0 : 0 : 0 : 1]$ is a holomorphic map.

7 Exercise sheet 7

Let $\Lambda = \mathbb{Z}\tau_1 + \mathbb{Z}\tau_2$ be a lattice in \mathbb{C} .

- (1) Describe the 3-torsion points of \mathbb{C}/Λ .
- (2) How many are they?
- (3) Let φ be the Weierstrass embedding with respect to Λ. Let E be φ(C/Λ) and P ∈ E. Show that if 3P = 0 then the Hessian polynomial of E vanishes at P, where the Hessian polynomial of E is the determinant of the Hessian matrix of E.
- (4) Show that the 3-torsion points of \mathbb{C}/Λ correspond to 3-tangents of E, where a 3-tangent of E is a line intersecting E in only one point.

8 Exercise sheet 8

- (Exercise 1) Let Λ be a lattice generated by 1 and τ . Let $\xi = a\tau + b$ and $\lambda = p\tau + q$ where $a, b, p, q \in \mathbb{Z}$ (same hypothesis of Theorem 3.3.12/proof of Theorem 3.3.12 in the notes). Show that $\Theta_{\xi}(z + \lambda) = e_{\xi}(\lambda, z)\Theta_{\xi}(z)$ explicitly computing $e_{\xi}(\lambda, z)$.
- (Exercise 2) Let $C := \{ [x : y : z] \in \mathbb{P}^2_{\mathbb{C}} : F(x, y, z) = 0 \}$, where F(x, y, z) is a non singular polynomial of degree d, i.e. $(F, \partial F/\partial x, \partial F/\partial y, \partial F/\partial z) \neq (0, 0, 0, 0)$. Let $\phi(x, y, z)$ be a homogenous non-singular polynomial of degree d 3. Set

$$\omega = \frac{\phi(x, y, z)z^2}{\frac{\partial F}{\partial y}}d(\frac{x}{z}).$$

Study the differential ω in $C \cap \{z \neq 0\}$ and determine whether ω is holomorphic in $C \cap \{z \neq 0\}$.

9 Exercise sheet 9

- (Exercise 1) Let $C := \{ [x : y : z] \in \mathbb{P}^2_{\mathbb{C}} : F(x, y, z) = 0 \}$, where F(x, y, z) is a non singular polynomial of degree 4, i.e. $(F, \partial F/\partial x, \partial F/\partial y, \partial F/\partial z) \neq (0, 0, 0, 0)$. Let r be a line in $\mathbb{P}^2_{\mathbb{C}}$ given by the equation L(x, y, z) = 0. Define a divisor D on C as the intersection of r with C.
 - Show that deg(D) = 4.
 - Show that any other divisor $D' \in |D|$ is of the form D' = r'.C, for some line r' in $\mathbb{P}^2_{\mathbb{C}}$ of equation L'(x, y, z) = 0.

(Exercise 2) Let $C := \{ [x : y : z] \in \mathbb{P}^2_{\mathbb{C}} : F(x, y, z) = 0 \}$, where F(x, y, z) is a non singular polynomial of degree d. Let $\Gamma = \{ [x : y : z] \in \mathbb{P}^2_{\mathbb{C}} : G(x, y, z) = 0 \}$ be a degree (d-3) non singular curve. Define the intersection divisor of Γ and C as follows:

$$\Gamma.C = \sum_{p \in C} I(p, \Gamma \cap C)p$$

where $I(p, \Gamma \cap C) = ord_p(\frac{G}{H})$ with H a homogeneous polynomial of degree (d-3) non vanishing at p. Remark that $\frac{G}{H}|_C$ is a meromorphic function on C.

- Show that if $p \notin C \cap \Gamma$, then $I(p, \Gamma \cap C) = 0$.
- Show that the definition of $I(p, \Gamma \cap C)$ (namely the definition of $\Gamma.C$) does not depend on the choice of H.

10 Exercise sheet 10

From Exercise Sessions 3, 6, 8:

(Exercise 1) Let us consider the curve

$$\Gamma = \{ [x: y: z] \in \mathbb{P}^2_{\mathbb{C}} | xyz^3 + x^5 + y^5 = 0 \}.$$

Let $\sigma: C \to \Gamma$ be the desingularisation of Γ . Let p = [0:0:1].

- Show that $\sigma^{-1}(p)$ consists of two points $\sigma^{-1}(p) = \{p_1, p_2\}.$
- Let $f = x \circ \sigma$ and $h = y \circ \sigma$. Describe zeros, poles, ramification order, ect... of f, h and f/h.
- (Exercise 2) Let $\Lambda = \mathbb{Z}\tau_1 + \mathbb{Z}\tau_2$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp -function for the lattice Λ .

Let $g_2, g_3 \in \mathbb{C}$ such that $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$. The subset

$$C = \{ [x: y: h: t] \in \mathbb{P}^3_{\mathbb{C}} : y^2 = 4xt - g_2xh - g_3h^2, x^2 = ht \},\$$

is a submanifold of $\mathbb{P}^3_{\mathbb{C}}$. The map

$$\mathbb{C}/\Lambda := T \to \mathbb{P}^3_{\mathbb{C}},$$

sending $z \mapsto [\wp(z) : \wp'(z) : 1 : \wp^2(z)]$ for $z \neq 0$ and $0 \mapsto [0 : 0 : 0 : 1]$ is a holomorphic map. Moreover $\phi(T) = C$.

- Show that the map ϕ is injective and has maximal rank 1 on T.
- (Exercise 3) Let D be a divisor on a complex torus $X := \mathbb{C}/\Lambda$ with deg(D) > 0. Then $dim(\mathcal{L}(D)) = deg(D)$.

11 Exercise sheet 11

The following are exercises A and E from [2]: Algebraic curves and Riemann surfaces, Problems VI.2.

(Exercise 1) Given a meromorphic function f, and a divisor D, show that the multiplication operator

$$\mu_f^D: \mathcal{T}[D](X) \to \mathcal{T}[D - div(f)](X),$$

defined by sending $\sum r_p p$ to the suitable truncation of $\sum (fr_p) p$ is an isomorphism. Show that the inverse is $\mu_{1/f}^{D-div(f)}$.

(Exercise 2) Let X be the Riemann sphere. Show that $H^1(0) = 0$ by explicitly finding a preimage under α_0 for any Laurent tail divisor Z in $\mathcal{T}[0](X)$. (Hint: use partial fractions).

Let D denote a divisor on an algebraic curve X of genus g.

- (Exercise 1) [2, Problems VI.3 B.] Show that if D is a positive divisor of degree at least g+1, then there is a non-constant function in $\mathcal{L}(D)$.
- (Exercise 2) Show that if $dim\mathcal{L}(D) \neq 0$, then $deg(D) \geq 0$. Moreover show that if $dim\mathcal{L}(D) \neq 0$ and deg(D) = 0, then $D \sim 0$.
- (Exercise 3) [2, Problems VI.3 C.] Let deg(D) equal 2g 2 and $dim\mathcal{L}(D) = g$. Show that D is a canonical divisor.

13 Exercise sheet 13

The following are exercise H and I of Problems VI.2 in [2].

- (Exercise 1) Let X be a complex torus, and let p be the zero of the group law on X. Let z be a local cordinate on X at p, and consider the Laurent tail divisor $Z = z^{-1}p$; note that $Z \in \mathcal{T}[0](X)$. Show that Z is not in the image of α_0 , and conclude that $H^1(0) \neq 0$ for a complex torus.
- (Exercise 2) Prove that $H^1(0) \neq 0$ for a complex torus X via Riemann-Roch theorem.
- (Exercise 3) Let X be a complex torus. Fix a finite number of points p_i on X, with local coordinate z_i at p_i . Consider the Laurent tail divisor $Z = \sum_i c_i z_i^{-1} p_i$. Note that it is in $\mathcal{T}[0](X)$. Show that $Z = \alpha_0(f)$ for some global meromorphic function f on X iff $\sum_i c_i = 0$. Prove the above with and without the help of Riemann-Roch theorem.

References

- [1] R. Cavalieri and E. Miles. "Riemann Surfaces and Algebraic Curves: A First Course in Hurwitz Theory". In: *Cambridge University Press* (2016).
- [2] R. Miranda. Algebraic Curves and Riemann Surfaces. American Mathematical Society, 1995.