
Riemann surfaces and algebraic curves, Exercise
sessions 1-13

1 Exercise session 1
(Exercise 1) Let C = {[x : y : z] ∈ P2

C : F (x, y, z) = x4+y4+ z4 = 0} be a plane curve in P2
C.

• Show that C is a Riemann surface.

• Is the function f = x
y holomorphic in Uy ∩ C? Where Uy = {[x : y : z] ∈

P2
C : y ̸= 0}.

• Which is a local coordinate for Uy ∩ C when ∂F (x,1,z)
∂z ̸= 0?

• Which are the intersection points p1, . . . , pn of {∂F (x,1,z)
∂z = 0} ∩ Uy ∩ C?

Which is a local coordinate for this points? Write a local expression of a
neighbourhood of a pi ∈ Uy ∩ C ∩ {∂F (x,1,z)

∂z = 0} as ξ 7→ ξk. Explicitly
write the value of k and how you choose the change of coordinates.
Hint: it is asked to express (x − pi) as ξk. You may look at the proof
of Theorem 1.4.3 in the notes to have a guide for the right procedure to
follow.

(Exercise 2) Let C = {[x : y : z] ∈ P2
C : F (x, y, z) = xd + yd + zd = 0} be a plane curve in

P2
C. Same questions as Exercise (1).

(Exercise 3) Let C0 = {(x, y) ∈ C2 : y2 −
∏2g+2

i=1 (x − ai) = 0 : ai ̸= aj∀i ̸= j} be the
intersection of a plane curve C in P2

C with Uz = {[x : y : z] ∈ P2
C : z ̸= 0}.

• Show that C0 is a Riemann surface.

• Homogenize the equation of C0.

• Which are the points belonging to C for z = 0? Are those singular points?

(Exercise 4) Let h(x) be a polynomial of degree 2g+2 having distinct roots. Let us consider

U = {(x, y) ∈ C2 : y2 = h(x), x ̸= 0}.

Let us define k(z) = z2g+2h(1/z) and consider

V = {(z, w) ∈ C2 : w2 = k(z), z ̸= 0}.

Show that the map ϕ : U → V sending (x, y) to (1/x, y/xg+1) = (z, w) is an
isomorphism of Riemann surfaces.

2 Exercise session 2
(Exercise 1) Desingularise the curve of equation w2 + z5 = 0 in C2.

(Exercise 2) Let us consider the tacnode quartic D in C2 with equation w(w − z2) − z4 =
0. Show that D is desingularised after two blow-ups. (First blow-up in a
neighbourhood U of p = (0, 0) at p. Denote with π : Ũ → U such blow-up.
The strict transform C ′ of C via π has a nodal point at q = ((0, 0), [1, 0]) ∈ Ũ .
Then it is sufficient to blow-up Ũ at q.)

(Exercise 3) Desingularise the plane curve C = {[x : y : z] : z2gy2 −
∏2g+2

i=1 (x − aiz) = 0 :
ai ̸= aj∀i ̸= j} (see Exercise (3) of Exercise session 1).

1



(Exercise 4) Let us consider the same objects of Exercise (1) in Exercise sheet 1. Study
f = x

y in C ∩ {y = 0}. Choose a local chart. Describe f in such chart. Does f
have poles?

(Exercise 5) Let us consider the same objects of Exercise (2) in Exercise sheet 1. Study
f = x

y in C ∩ {y = 0}. Choose a local chart. Describe f in such chart. Does f
have poles?

3 Exercise session 3
(Exercise 1) Let us consider the curve

Γ = {[x : y : z] ∈ P2
C|xyz3 + x5 + y5 = 0}.

Let σ : C → Γ be the desingularisation of Γ. Let p = [0 : 0 : 1].

• Show that σ−1(p) consists of two points σ−1(p) = {p1, p2}.
• Let f = x◦σ and h = y ◦σ. Describe zeros, poles, ramification order, ect...

of f, h and f/h.

(Exercise 2) Show that every complex torus C/L is isomorphic to a torus which has the form
C(Z+ τZ), where τ is a complex number with strictly positive imaginary part.

4 Exercise session 4
Let Λ and Λ′ be lattices {mτ1 + nτ2 : m,n ∈ Z} and {mτ ′1 + nτ ′2 : m,n ∈ Z}.

(Exercise 1) Let ϕ : C/Λ → C/Λ′ sending z + Λ to mz + b + Λ′. Show that ϕ is a group
homorphism iff b ∈ Λ′ iff ϕ(0) = 0.

(Exercise 2) Let ϕ : C/Λ → C/Λ sending z + Λ to −z + Λ.

• Show that ϕ preserves the Weierstrass embedding of the complex torus in
an elliptic curve E in P2

C.
• Show that ϕ corresponds P2

C to ψ : E → E sending [x : y : z] to [x : −y : z].
• Show that the 2-torsion elements in C/Λ correspond to the points [x : 0 : z]

in E.

5 Exercise session 5
Let Λ = Zτ1 + Zτ2 be a lattice in C and let ℘ be the Weierstrass ℘-function for the
lattice Λ.

(Exercise 1) Show that ℘′ and ℘′′ do not have common zeros.

(Exercise 2) Describe in a neighbourhood of 0 the functions ℘, ℘′, ℘′′, ℘2, ℘′

℘2 ,
℘′′

℘2 in the form
F (z) = akz

k(1 + ak+1z + ....) with ak ̸= 0 describing explicitly only ak.

6 Exercise session 6
From Exercise sheet 6:
Let Λ = Zτ1 + Zτ2 be a lattice in C and let ℘ be the Weierstrass ℘-function for the
lattice Λ. Let g2, g3 ∈ C such that (℘′)2 = 4℘3 − g2℘− g3. The subset

C = {[x : y : h : t] ∈ P3
C : y2 = 4xt− g2xh− g3h

2, x2 = ht},

is a submanifold of P3
C.

The map
C/Λ := T → P3

C,

sending z 7→ [℘(z) : ℘′(z) : 1 : ℘2(z)] for z ̸= 0 and 0 7→ [0 : 0 : 0 : 1] is a holomorphic
map.

(Exercise 1) Prove that ϕ(T ) = C.

(Exercise 2) The map ϕ is injective and has maximal rank 1 on T .
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7 Exercise session 7
Let λ ∈ C, λ ̸= 0 and ϕ : P2

C → P2
C sending

(x : y : z) 7→ (u : v : w) = (λ2x : λ3y : z),

(Exercise 1) Show that ϕ is biholomorphic.

(Exercise 2) Show that the elliptic curves C1, C2 with equations

y2z = 4x3 − g2xz
2 − g3z

3, v2w = 4u3 − λ4g2uw
2 − λ6g3w

3

respectively, are isomorphic.

8 Exercise session 8
Let X = C/Λ be a complex torus.

(Exercise 1) Let D1, D2 be two divisors on X. Then D1 ∼ D2 iff deg(D1) = deg(D2) and
A(D1) = A(D2), where A is the Abel-Jacobi map (Definition 3.3.5 in the course
pdf).

(Exercise 2) Let D be a divisor on X with deg(D) > 0. Then dim(L(D)) = deg(D).

Hint for Exercises:

(1) See Corollary 3.3.13 in the course pdf.

(2) As a Corollary of Abel’s Theorem (Theorem 3.3.12 in the course pdf) we have
the following:

Corollary 8.1 (Chapter V, Corollary 2.10 of Miranda’sbook). Let D be a divi-
sor on X with deg(D) > 0. Then D is linearly equivalent to a positive divisor.
If deg(D) = 1, then D ∼ q for a unique point q ∈ X. If deg(D) > 1, then for
any x ∈ X there exists a positive divisor D′ on X which is linearly equivalent
to D and that does not contain x in its support.

9 Exercise session 9
Let C := {[x : y : z] ∈ P2

C : F (x, y, z) = 0}, where F (x, y, z) is a non singular
polynomial of degree d, i.e. (F, ∂F/∂x, ∂F/∂y, ∂F/∂z) ̸= (0, 0, 0, 0). Let {[x : y :
z] ∈ P2

C : L(x, y, z) = 0} be a line intersecting C in d distinct points. Without loss of
generality, one can assume that L(x, y, z) = x.

(1) In the chart C ∩ {z ̸= 0} show that x is a coordinate.

(2) Show that w = xd−3

∂F (x,y,1)
∂y

dx is a holomorphic 1-form over C ∩ {z ̸= 0}.

(3) Prove that the genus of C equals (d−1)(d−2)
2 using what is known about deg(div0(ω)).

(Hint: Proposition 3.2.7 and Corollary 3.2.8 of the course notes)

10 Exercise session 10
(Exercise 1) Let D be a divisor of a compact Riemann surface. Let |D| be the complete

linear system of D. Assume that F = min{E : E ∈ |D|} in non-empty (F
is the largest divisor that occurs in every divisor of D). It is clear that every
divisor in |D| can be written as the sum of F plus a divisor in |D − F |. Prove
that L(D − F ) = L(D).

(Exercise 2) You may work on previous exercise sessions you have doubts about other you
can start working on the next exercise sheet.
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11 Exercise session 11
The following are exercises F and J of Problems V I.2 in [Mira95].

(Exercise 1) Let X be the Riemann sphere and let p be the point z = 0. Considering p as an
ordinary divisor on X, show that H1(−p) = 0 by explicitly finding preimages
under α−p for any Laurent tail divisor Z in T [−p](X).

(Exercise 2) Show that if D1 ∼ D2, then H1(D1) ≃ H1(D2) , by showing that an iso-
morphism is induced from an appropriate multiplication operator on the corre-
sponding Laurent tail spaces.

12 Exercise session 12
Let D denote a divisor on an algebraic curve X of genus g.

(Exercise 1) [Mira95][Problems VI.3 F.] Show that if Riemann-Roch is true for a divisor D
then it is true for the divisor K −D.

(Exercise 2) (Stronger version of [Mira95][Problems VI.3 I.]) Let C be a non-singular curve
of degree d in P2

C. The genus of C is:

g(C) =
(d− 1)(d− 2)

2
.

Show that the degree (d − 3) curves in P2
C cut out of C the canonical linear

series, i.e.
|K| = {Γ.C|Γ is a degree (d-3) curve in P2

C},

where Γ.C is defined in (2) of Exercise sheet 9.
Walkthrough the proof:

(Step 1) Fix a divisor D = Γ.C where Γ is a degree (d− 3) curve in P2
C of equation

G(x, y, z) = 0. Denote with Wd−3 the space

{(H
G
)}|C |H is a homogeneous polynomial of degree (d− 3)}.

Prove that Wd−3 ⊆ L(D).

(Step 2) Compute the dimension of Wd−3.

(Step 3) Compute the degree of D in terms of g(C).

(Step 4) Compute the dimension of L(D).

(Step 5) Prove that L(D) =Wd−3.

Hint for Step 3: Bèzout theorem (even if you have not seen a full proof yet, you can
use it).
Hint for Step 4: modify the hypothesis of Exercise (3) in Exercise sheet 12, assuming
that dimL(D) ≥ g; then the statement still holds! one may use this result to prove
Step 4.

13 Exercise session 13
For a smooth plane cubic in P2

C, define the j-invariant by taking it to a Weierstrass
form.

(Exercise 1) Show that this is well defined.

(Exercise 2) Show that two cubics are isomorphic (one is taken to the other via a linear
change of coordinate of P2

C) iff the cubics have same j-invariant.

(Exercise 3) Show that for two isomorphic hyperelliptic cubic curves E1 ≃ E2, the branch
points are isomorphic.
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Fun application of Bèzout Theorem (Bonus Exercise), it would be ex-
plained better during the last exercise session (out of the purposes of the
course):

1. Let C be a smooth plane curve of degree 4 in P2
R. Prove that the topology of the

pair (C,P2
R) cannot realise, up to homeomorphism of P2

R, the "shapes" depicted
in the center and on the right of Fig. 1.

k + 1︷ ︸︸ ︷

Figure 1:

2. Let C be a smooth plane curve of degree 2k in P2
R. Prove that the topology

of the pair (C,P2
R) cannot realise, up to homeomorphism of P2

R, the "shapes"
depicted on the left of Fig. 1.
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