Riemann surfaces and algebraic curves, Exercise session 1

(Exercise 1) Let $C = \{[x:y:z] \in \mathbb{P}^2_{\mathbb{C}}: F(x,y,z) = x^4 + y^4 + z^4 = 0\}$ be a plane curve in $\mathbb{P}^2_{\mathbb{C}}$.

- \bullet Show that C is a Riemann surface.
- Is the function $f = \frac{x}{y}$ holomorphic in $U_y \cap C$? Where $U_y = \{[x:y:z] \in \mathbb{P}^2_{\mathbb{C}}: y \neq 0\}.$
- Which is a local coordinate for $U_y \cap C$ when $\frac{\partial F(x,1,z)}{\partial z} \neq 0$?
- Which are the intersection points p_1, \ldots, p_n of $\left\{\frac{\partial F(x,1,z)}{\partial z} = 0\right\} \cap U_y \cap C$? Which is a local coordinate for this points? Write a local expression of a neighbourhood of a $p_i \in U_y \cap C \cap \left\{\frac{\partial F(x,1,z)}{\partial z} = 0\right\}$ as $\xi \mapsto \xi^k$. Explicitly write the value of k and how you choose the change of coordinates. Hint: it is asked to express $(x p_i)$ as ξ^k . You may look at the proof of *Theorem* 1.4.3 in the notes to have a guide for the right procedure to follow.
- (Exercise 2) Let $C=\{[x:y:z]\in\mathbb{P}^2_{\mathbb{C}}:F(x,y,z)=x^d+y^d+z^d=0\}$ be a plane curve in $\mathbb{P}^2_{\mathbb{C}}$. Same questions as *Exercise* (1).
- (Exercise 3) Let $C_0 = \{(x,y) \in \mathbb{C}^2 : y^2 \prod_{i=1}^{2g+2} (x-a_i) = 0 : a_i \neq a_j \forall i \neq j\}$ be the intersection of a plane curve C in $\mathbb{P}^2_{\mathbb{C}}$ with $U_z = \{[x:y:z] \in \mathbb{P}^2_{\mathbb{C}} : z \neq 0\}$.
 - Show that C_0 is a Riemann surface.
 - Homogenize the equation of C_0 .
 - Which are the points belonging to C for z = 0? Are those singular points?
- (Exercise 4) Let h(x) be a polynomial of degree 2g+2 having distinct roots. Let us consider

$$U = \{(x, y) \in \mathbb{C}^2 : y^2 = h(x), x \neq 0\}.$$

Let us define $k(z) = z^{2g+2}h(1/z)$ and consider

$$V = \{(z, w) \in \mathbb{C}^2 : w^2 = k(z), z \neq 0\}.$$

Show that the map $\phi: U \to V$ sending (x,y) to $(1/x,y/x^{g+1}) = (z,w)$ is an isomorphism of Riemann surfaces.