Riemann surfaces and algebraic curves, Exercise session 6

From Exercise sheet 5:

Let $\Lambda = \mathbb{Z}\tau_1 + \mathbb{Z}\tau_2$ be a lattice in \mathbb{C} and let \wp be the Weierstrass \wp -function for the lattice Λ . Let $g_2, g_3 \in \mathbb{C}$ such that $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$. The subset

$$C = \{ [x:y:h:t] \in \mathbb{P}^3_{\mathbb{C}} : y^2 = 4xt - g_2xh - g_3h^2, x^2 = ht \},$$

is a submanifold of $\mathbb{P}^3_{\mathbb{C}}$.

The map

$$\mathbb{C}/\Lambda := T \to \mathbb{P}^3_{\mathbb{C}},$$

sending $z \mapsto [\wp(z):\wp'(z):1:\wp^2(z)]$ for $z \neq 0$ and $0 \mapsto [0:0:0:1]$ is a holomorphic map.

(Exercise 1) Prove that $\phi(T) = C$.

(Exercise 2) The map ϕ is injective and has maximal rank 1 on T.