Exercises Geometric Group Theory

Summer semester 2022

Exercise sheet 1

Hand in exercises 1,2, 3a),3b),3c),4a) by <u>April 27, 12 a.m.</u> The remaining exercises will be carried out during the exercise session.

The exercise sheets can be delivered to Manzaroli mailbox in room A16 building C on the 3rd floor or scanned and sent to matilde.manzaroli 'at' uni-tuebingen.de.

A subgroup N of a group G is said normal, if $\forall g \in G$ and $\forall n \in N, gng^{-1} \in N$.

Exercise 1

- (a) Show that N is a normal subgroup of G if and only if gN = Ng for all $g \in G$, where $gN = \{gn \mid n \in N\}$ and $Ng = \{ng \mid n \in N\}$.
- (b) Show that the image of a normal subgroup via a group homomorphism is not in general a normal subgroup, but the preimage of a normal subgroup via a group homomorphism is always a normal subgroup.
- (c) Let $f: (G, \cdot) \to (H, \star)$ be a group homomorphism. Show that $\operatorname{Ker}(f)$ is normal and that the map

$$\tilde{f}: G/\operatorname{Ker}(f) \to \operatorname{Im}(f)$$

 $[g] \mapsto f(g)$

induced by f is a group isomorphism.

Exercise 2

Verify that the following function is a group homomorphism:

$$\exp: (\mathbb{R}, +) \to (\mathbb{C} \setminus \{0\}, \cdot)$$
$$t \mapsto \exp(2\pi i t).$$

- (a) Determine Ker(exp).
- (b) To which subgroup of $(\mathbb{C}\setminus\{0\}, \cdot)$ is $\mathbb{R}/Ker(exp)$ isomorphic to and why?

Exercise 3

Let us consider the subset $H := \{ id, (12) \circ (34), (13) \circ (24), (14) \circ (23) \}$ of \mathbb{S}_4 .

- (a) Show that H is a subgroup of S_4 .
- (b) Show that H is normal.

(*Hint: You may use without proving it that, for all* $n \in \mathbb{N}_{>0}$ *and Zykel* $(x_1 x_2 \dots x_k) \in \mathbb{S}_n$ *, one has that:* $\sigma \circ (x_1 \dots x_k) \circ \sigma^{-1} = (\sigma(x_1) \dots \sigma(x_k)) \quad \forall \sigma \in \mathbb{S}_n$.)

One can define the group $\$_4$ as the symmetry group of a equilateral tetrahedron with corners 1, 2, 3 and 4. Let M_{AB} denote the middle-point of the segment \overline{AB} for $1 \le A, B \le 4, A \ne B$. We define the straight lines $d_1 := M_{12}M_{34}, d_2 := M_{13}M_{24}$ and $d_3 := M_{14}M_{23}$ (see the picture).

(c) Explain geometrically: $(12) \circ (34)$ is a rotation around d_1 , $(13) \circ (24)$ is a rotation d_2 and $(14) \circ (23)$ is a rotation around d_3 .

To any permutation σ of S_4 corresponds a bijection $\varphi_{\sigma} : \{d_1, d_2, d_3\} \rightarrow \{d_1, d_2, d_3\}$ determined by $\varphi_{\sigma}(M_{ij}M_{kl}) = M_{\sigma(i)\sigma(j)}M_{\sigma(k)\sigma(l)}$ for pairwise distinct $i, j, k, l \in \{1, 2, 3, 4\}$.

For example

$$\begin{aligned} \varphi_{(12)}(d_1) &= \varphi_{(12)}(M_{12}M_{34}) = M_{21}M_{34} = d_1, \\ \varphi_{(12)}(d_2) &= \varphi_{(12)}(M_{13}M_{24}) = M_{23}M_{14} = d_3, \\ \varphi_{(12)}(d_3) &= \varphi_{(12)}(M_{14}M_{23}) = M_{24}M_{13} = d_2. \end{aligned}$$

For each φ_{σ} one obtains in this way a permutation $\Phi(\sigma) \in S_3$ uniquely defined (for example $\Phi((12)) = (23) \in S_3$, because $\varphi_{(12)}$ exchanges d_2 with d_3 and fixes d_1). Let us define a map $\Phi : S_4 \to S_3$ sending $\sigma \mapsto \Phi(\sigma)$, where $\Phi(\sigma)$ has been constructed from some σ as previously shown.

(Hint: The map Φ does the following: every $\sigma \in S_4$ can be interpreted as a map from the tetrahedron onto itself (for example (12) is a reflexion with respect to the plane perpendicular to $\overline{12}$ through M_{12} . Then, such a map always sends any line d_i to some other d_j , with $i, j \in \{1, 2, 3\}$. Therefore this process produces the permutation $\Phi(\sigma)$.)

(d) Show that for $\sigma = (34)$ and $\rho = (132)$ one has: $\Phi(\sigma \circ \rho) = \Phi(\sigma) \circ \Phi(\rho)$, i.e the homomorphism property of Φ applies to these particular σ and ρ .

The property shown in d) also holds for all choices of σ and ρ . You may use without proving it that Φ is a homomorphism.

- (e) Show that Φ is surjective.
- (f) Show that $\operatorname{Kern}(\Phi) = H$ and conclude that this gives an isomorphism from S_4/H to S_3 .

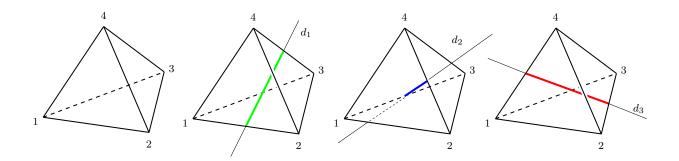


Abbildung 1: An equilateral tetrahedron with vertices 1, 2, 3, 4 and the lines d_1, d_2, d_3 .

Exercise 4

- (a) Let G be the free group generated by $\{x, y\}$. Prove that the subgroup N of G generated by x^2, xyx^{-1}, y is a normal subgroup of index 2 in G. Of index 2 means that |G/N| = 2.
- (b) Show that N is a free group generated by 3 elements.

The first exercise session will take place online on Wednesday, May 4, at 4:15-5:45 p.m. The link will be sent via email. From May 11th, the exercise class will take place in room C4H33 of the building C from 4:15 to 5:45 p.m.