Seminar "Euklid trifft Bézout" 2023/2024
 Wir treffen uns im Raum S08 (Gebäude C, 5. Stock) Dienstags 16-18 Uhr  
-   SEMINARPROGRAMM -  
Einige Referenzen
1. Euclid Meets Bézout: Intersecting Algebraic Plane Curves with the Euclidean Algorithm, Jan Hilmar and Chris Smyth (2010), Artikel
2. A proof of Bézout's theorem using the Euclidean algorithm, R. P. Hulst (2011), Bachelor thesis 
3. Plane Algebraic Curves, Andreas Gathmann (2018), Class Notes TU Kaiserslautern 
4. Algebraic curves:  An Introduction to Algebraic Geometry, W. Fulton (2008) 
 May-June 2023 School -  Involutions in Gauge theory and in algebraic geometry - Nantes 
 Exercise sheet 1th June 
   2023 -  Real algebraic geometry- Universität Tübingen
 
  Some references
  1. Real Algebraic Varieties, F. Mangolte 
  2. Real Algebraic Surfaces,  R. Silhol 
  3. Real Algebraic and Semi-algebraic Sets,  R. Benedetti, Jean-Jacques Risler 
  4. Topological properties of real algebraic varieties: du côté de chez Rokhlin, A.Degtyarev, V.Kharlamov 
  5.  O. Viro notes 
  6.   Algebraic Topology, A. Hatcher
 
  
We meet on Tuesday 14:15-16 Room S09 (C-Bau [Mathe/Physik]) and Wednesday 12:15-13:45 and 14-15 Room C5H41 Seminarraum S08 (C-Bau [Mathe/Physik]). 
15th-19th of May 
(recall that from the 29th of May to the 2nd of June the university is closed) 
5th-9th of June 
26th-30th of June 
Handwritten notes
 Notes RAG till now 
Complementary material presented in class:
 Introduction singular homology 
 Some applications of Mayer Vietoris 
 Some examples, relative singular homology, excision, Poincaré duality 
Pdfs of the exercise sessions
 2022/2023 -  Algebraic curves- Universität Tübingen
    Here the link to the web page of the Algebraic Curves course by  Daniele Agostini of the Universität Tübingen
    2022/2023 -  Algebraic number theory - Universität Tübingen
Here the link to the web page of the Algebraic number theory course by  Anton Deitmar of the Universität Tübingen
   2022 -  Geometric group theory- Universität Tübingen
    Here the link to the web page of the Geometric Group Theory course by  Hannah Markwig of the Universität Tübingen
  Book references
  Geometric Group Theory by Clara Löh
  
 We meet on Wednesday from 16:15 to 17:45 in N16 Bau C 
Pdfs of the exercise sessions
   Blatt1.pdf (German),  ex1.pdf (English)
  
  
     Blatt2.pdf (German),  ex2.pdf (English)
  
    
    
       Blatt3.pdf (German),  ex3.pdf (English)
    
      
      
         Blatt4.pdf (German),  ex4.pdf (English)
      
        
        
           Blatt5.pdf (German),  ex5.pdf (English)
        
          
          
             Blatt6.pdf (German),  ex6.pdf (English)
          
            
            
               Blatt7.pdf (German),  ex7.pdf (English)
            
              
              
                 Blatt8.pdf (German),  ex8.pdf (English)
              
                
                
                   Blatt9.pdf (German),  ex9.pdf (English)
                
                  
                  
                     Blatt10.pdf (German),  ex10.pdf (English)
                  
                    
                    
                       Blatt11.pdf (German),  ex11.pdf (English)
                    
                      
                      
                         Blatt12.pdf (German),  ex12.pdf (English)
                      
                        
    2021/2022 - Algebraic Curves and Riemann surfaces - Universität Tübingen 
      Here the link to the web page of the Algebraic Curves and Riemann surfaces course by  Hannah Markwig of the Universität Tübingen
    Book references
    Arbarello, Cornalba, Griffiths,Harris: Geometry of Algebraic Curves 
     Cavalieri, Miles: Algebraic Curves and Riemann surfaces, a first course in Hurwitz theory
     Miranda: Algebraic Curves
    
  
  Moreover the class is in Hybrid format. The link to follow the class from home is the same as that to follow the course.
    Pdfs of the exercise sheets 1 to 13
     ex1-13.pdf 
  
  Pdfs of the exercise sessions 1 to 13
     es1-13.pdf
    
  
  
  
    2021 - Toric Geometry - Universität Tübingen
      Here the link to the web page of the Toric Geometry course by  Hannah Markwig of the Universität Tübingen
    Book references
     Cox, Little, Schenck, Toric varieties
     Fulton, Toric geometry
    
  
  Pdfs of the exercise sessions
   Exercise sessions 1-13, Toric Geometry,
     All_ex1_13.zip