Seminar "Euklid trifft Bézout" 2023/2024
Wir treffen uns im Raum S08 (Gebäude C, 5. Stock) Dienstags 16-18 Uhr
- SEMINARPROGRAMM -
Einige Referenzen
1. Euclid Meets Bézout: Intersecting Algebraic Plane Curves with the Euclidean Algorithm, Jan Hilmar and Chris Smyth (2010), Artikel
2. A proof of Bézout's theorem using the Euclidean algorithm, R. P. Hulst (2011), Bachelor thesis
3. Plane Algebraic Curves, Andreas Gathmann (2018), Class Notes TU Kaiserslautern
4. Algebraic curves: An Introduction to Algebraic Geometry, W. Fulton (2008)
May-June 2023 School - Involutions in Gauge theory and in algebraic geometry - Nantes
Exercise sheet 1th June
2023 - Real algebraic geometry- Universität Tübingen
Some references
1. Real Algebraic Varieties, F. Mangolte
2. Real Algebraic Surfaces, R. Silhol
3. Real Algebraic and Semi-algebraic Sets, R. Benedetti, Jean-Jacques Risler
4. Topological properties of real algebraic varieties: du côté de chez Rokhlin, A.Degtyarev, V.Kharlamov
5. O. Viro notes
6. Algebraic Topology, A. Hatcher
We meet on Tuesday 14:15-16 Room S09 (C-Bau [Mathe/Physik]) and Wednesday 12:15-13:45 and 14-15 Room C5H41 Seminarraum S08 (C-Bau [Mathe/Physik]).
15th-19th of May
(recall that from the 29th of May to the 2nd of June the university is closed)
5th-9th of June
26th-30th of June
Handwritten notes
Notes RAG till now
Complementary material presented in class:
Introduction singular homology
Some applications of Mayer Vietoris
Some examples, relative singular homology, excision, Poincaré duality
Pdfs of the exercise sessions
2022/2023 - Algebraic curves- Universität Tübingen
Here the link to the web page of the Algebraic Curves course by Daniele Agostini of the Universität Tübingen
2022/2023 - Algebraic number theory - Universität Tübingen
Here the link to the web page of the Algebraic number theory course by Anton Deitmar of the Universität Tübingen
2022 - Geometric group theory- Universität Tübingen
Here the link to the web page of the Geometric Group Theory course by Hannah Markwig of the Universität Tübingen
Book references
Geometric Group Theory by Clara Löh
We meet on Wednesday from 16:15 to 17:45 in N16 Bau C
Pdfs of the exercise sessions
Blatt1.pdf (German), ex1.pdf (English)
Blatt2.pdf (German), ex2.pdf (English)
Blatt3.pdf (German), ex3.pdf (English)
Blatt4.pdf (German), ex4.pdf (English)
Blatt5.pdf (German), ex5.pdf (English)
Blatt6.pdf (German), ex6.pdf (English)
Blatt7.pdf (German), ex7.pdf (English)
Blatt8.pdf (German), ex8.pdf (English)
Blatt9.pdf (German), ex9.pdf (English)
Blatt10.pdf (German), ex10.pdf (English)
Blatt11.pdf (German), ex11.pdf (English)
Blatt12.pdf (German), ex12.pdf (English)
2021/2022 - Algebraic Curves and Riemann surfaces - Universität Tübingen
Here the link to the web page of the Algebraic Curves and Riemann surfaces course by Hannah Markwig of the Universität Tübingen
Book references
Arbarello, Cornalba, Griffiths,Harris: Geometry of Algebraic Curves
Cavalieri, Miles: Algebraic Curves and Riemann surfaces, a first course in Hurwitz theory
Miranda: Algebraic Curves
Moreover the class is in Hybrid format. The link to follow the class from home is the same as that to follow the course.
Pdfs of the exercise sheets 1 to 13
ex1-13.pdf
Pdfs of the exercise sessions 1 to 13
es1-13.pdf
2021 - Toric Geometry - Universität Tübingen
Here the link to the web page of the Toric Geometry course by Hannah Markwig of the Universität Tübingen
Book references
Cox, Little, Schenck, Toric varieties
Fulton, Toric geometry
Pdfs of the exercise sessions
Exercise sessions 1-13, Toric Geometry,
All_ex1_13.zip